Zerreißprobe für Seidenfasern

Die Forschungsgruppe Molekulare Biomechanik unter der Leitung von Dr. Frauke Gräter am Heidelberger Institut für Theoretische Studien (HITS) erforscht mit rechnergestützten Methoden, wie physikalische Kräfte mit molekularen Prozessen zusammenwirken.

Ein Gegenstand ihrer Forschung sind die faszinierenden Eigenschaften von Spinnenseide, die reißfester als Stahl ist. Neue Ergebnisse dazu veröffentlichten die HITS-Forscher gemeinsam mit Kollegen aus Shanghai und Stuttgart im Artikel „Silk Fiber Mechanics from Multiscale Force Distribution Analysis“, der jetzt im „Biophysical Journal“ erschienen ist und über die Wissenschaftswelt hinaus auch in den internationalen Medien bereits eine gewisse Resonanz erzielt hat.

„Die Publikation ist Ergebnis eines interdisziplinären Projekts“, so Dr. Frauke Gräter. „Wir haben physikalische Modelle biologischer Probleme mit ingenieurwissenschaftlichen Werkzeugen verknüpft.“ Beteiligt waren neben Wissenschaftlern des HITS auch Dr.-Ing. Bernd Markert (Institut für Mechanik, Uni Stuttgart) und Forscher am CAS-MPG Partner Institute of Computational Biology, Shanghai.

Die genauen physikalischen Modelle des Aufbaus von Spinnenseide lassen sich mit heutigen Rechnerleistungen nur zum Bruchteil berechnen – einzelne Bausteine zu berechnen dauert selbst auf Supercomputern einige Monate. „Wir nutzen die Ergebnisse unserer eigenen bisherigen Berechnungen und skalieren sie auf die gesamte Seidenfaser hoch, ähnlich wie bei einer Hochrechnung“, erklärt Frauke Gräter. „Dazu berechnen wir sie mit den Methoden und Werkzeugen der Ingenieure, wie sie zum Beispiel bei einem Crash-Test angewendet werden.“ Dadurch können die HITS-Forscher in ihren Computersimulationen der Frage nachgehen, wie die gesamte Seidenfaser auf mechanische Kraft regiert, wenn zum Beispiel daran gezogen wird.

Das Ergebnis der Studie im „Biophysical Journal“ zeigt, wie die Hauptbestandteile des Seidenproteins angeordnet sein müssen, damit die optimale Reißfestigkeit und Elastizität erreicht werden. „Die Hauptbestandteile sind zum einen kristalline, also hoch geordnete, Bausteine und zum anderen weiche, ungeordnete Einheiten“, so Frauke Gräter. Bisher nahm man an, dass diese beiden Bestandteile in der Seide zufällig angeordnet sind. Die Heidelberger Forscher konnten nun zeigen, dass die Seide erst dann wirklich reißfest wird, wenn man die Bausteine regelmäßig in Scheiben anordnet – „wie die hauchdünnen Scheiben einer Salami“, sagt Frauke Gräter. Bislang gibt es keinen Kunststoff, der sich mit den mechanischen Eigenschaften der Seide messen kann. „Unsere Computermodelle können den Polymerchemikern helfen, neue Materialien zu entwickeln, die zugleich sehr reißfest und elastisch sind“, resümiert Gräter abschließend.

Der Artikel im Biophysical Journal:
Cetinkaya et al., Silk Fiber Mechanics from Multiscale Force Distribution Analysis, Biophysical Journal (2011), doi:10.1016/j.bpj.2010.12.3712
Ansprechpartner für Journalisten und Interviewanfragen für Frauke Gräter:
Dr. Peter Saueressig
Presse- und Öffentlichkeitsarbeit
HITS Heidelberger Institut für Theoretische Studien
Tel: +49-6221-533-245
peter.saueressig@h-its.org

Media Contact

Dr. Peter Saueressig idw

Weitere Informationen:

http://www.h-its.org

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer