Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie halten Verbindungen von Muskeln und Sehnen ein Leben lang? Studie in der Fruchtfliege Drosophila

04.04.2019

Viele Muskeln sind mit Sehnen verknüpft, was Tieren das Laufen, Schwimmen oder Fliegen ermöglicht. Diese Muskel-Sehnen-Verknüpfungen müssen sich bei der Entwicklung so aufbauen, dass sie die hohen mechanischen Kräfte aushalten, die während des Lebens auftreten. Ein internationales Forscherteam aus Marseille, München und Münster hat herausgefunden, wie ein Protein die mechanischen Belastungen an Muskel-Sehnen-Verbindungen steuert. Die Studie ist in der Fachzeitschrift „PLOS Biology“ erschienen.

Viele Muskeln sind mit Sehnen verknüpft, was Tieren das Laufen, Schwimmen oder Fliegen ermöglicht. Die dazu notwendigen Kräfte werden von Proteinfasern erzeugt, die an Muskel-Sehnen-Verknüpfungen angeheftet sind und daran ziehen. Während der Entwicklung müssen sich diese Muskel-Sehnen-Verknüpfungen so aufbauen, dass sie die hohen mechanischen Kräfte aushalten, die während des Lebens auftreten können.


Längsschnitt durch den Oberkörper einer Fruchtfliege, die einen eingebauten Kraftsensor im Talin-Protein hat. Der Kraftsensor an den Muskel-Sehnen-Verknüpfungen ist grün und die Flugmuskeln magenta.

S. Lemke et al.

Ein interdisziplinäres Wissenschaftlerteam aus Marseille, München und Münster hat es nun geschafft, die mechanischen Kräfte zu messen, die an einem Protein ziehen, das bei der Verknüpfung von Muskeln und Sehnen eine bedeutende Rolle spielt. Der Name des Proteins: Talin.

Die Wissenschaftlerinnen und Wissenschaftler nutzten die Flugmuskulatur der Fruchtfliege Drosophila für diese molekularen Kraftmessungen und stellten fest, dass bei der Entwicklung von Muskel-Sehnen-Verknüpfungen nur ein überraschend kleiner Anteil der Talin-Moleküle Kräften ausgesetzt ist.

Gleichzeitig fanden sie heraus, dass die Muskeln eine hohe Anzahl von Talin-Molekülen an den Verknüpfungen ansammeln, um mit den zunehmenden Kräften im Gewebe umgehen zu können. Auf diese Weise können sich viele Talin-Moleküle die hohen Kräfte der Muskelkontraktionen, zum Beispiel während des Fliegens, dynamisch aufteilen.

„Dieses mechanische Anpassungskonzept ermöglicht, dass Muskel-Sehnen-Verknüpfungen ein Leben lang halten können“, sagt Sandra Lemke, Biologiedoktorandin am Max-Planck-Institut für Biochemie (MPIB) in Martinsried, die den Großteil der Experimente durchführte. Leiter der Studie waren Dr. Frank Schnorrer vom Institut für Entwicklungsbiologie der französischen Universität Marseille und Prof. Dr. Carsten Grashoff von der Westfälischen Wilhelms-Universität Münster (WWU). Die Studie ist in der Fachzeitschrift „PLOS Biology“ erschienen.

Hintergrund und Methode:

Zelluläre Anheftungsstrukturen, sogenannte Zelladhäsionen, sind wichtig für tierische Zellen, um mechanische Kräfte spüren und ihnen widerstehen zu können. Ein wichtiger Bestandteil solcher Strukturen sind Integrin-Rezeptoren, die an der Zelloberfläche die Umgebung der Zelle erkunden und innerhalb der Zelle an ein Ende des Talin-Proteins binden.

Da sich das andere Ende dieses Proteins an das kontraktile Zellskelett aus sogenannten Aktin- und Myosinfasern verankert, befindet sich Talin am perfekten Ort, um molekulare Kräfte verarbeiten zu können. Die Forscher bauten daher einen fluoreszierenden Kraftsensor in das Protein Talin ein, um mithilfe von Mikroskopie-Verfahren molekulare Kräfte untersuchen zu können.

Frühere Studien der Forschergruppe um Carsten Grashoff vom Institut für Molekulare Zellbiologie der WWU hatten bereits gezeigt, dass 70 Prozent aller Talin-Moleküle in Zelladhäsionen hohen Kräften ausgesetzt sind, wenn sich die Zellen auf hartem Kunststoff- oder Glasuntergrund befinden. Daher sind die Ergebnisse der neuen Studie sehr überraschend: Weniger als 15 Prozent der Talin-Moleküle „spüren“ messbare Kräfte bei der Entwicklung von Muskelansätzen in einem intakten Organismus.

Zur Interpretation der Ergebnisse ist es wichtig zu wissen, dass sich ein mit Sehnenzellen verknüpfter Muskel in einer viel weicheren Umgebung befindet als Zellen in einer harten Kunststoffschale im Labor. Allerdings müssen sich Muskeln in der Entwicklung darauf einstellen, später den hohen Kräften ausgesetzt zu sein, die bei Muskelkontraktionen in einer erwachsenen Fliege erzeugt werden. Um sich darauf vorzubereiten, sammeln die Muskeln viele Talin- und Integrin-Moleküle in ihren Zelladhäsionen an.

Die Wissenschaftler reduzierten die Anzahl der vorhandenen Talin-Moleküle in den Flugmuskeln von Fruchtfliegen mithilfe von molekulargenetischen Methoden. Zwar waren die Fliegen nach dem Eingriff weiterhin überlebensfähig, aber ihre Muskel-Sehnen-Verknüpfungen rissen bei den ersten Flugversuchen, sodass sie nicht mehr fliegen konnten. Diese Ergebnisse zeigen, dass sich die Verknüpfungen zwischen Zellen dynamisch an die Bedürfnisse der jeweiligen Gewebe anpassen müssen, um ein Leben lang zu halten. In Zukunft möchten die Wissenschaftler herausfinden, wie die mechanischen Signale dazu führen, dass sich Moleküle in der richtigen Anzahl an der richtigen Stelle innerhalb von Zellen ansammeln.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Carsten Grashoff
Westfälische Wilhelms-Universität Münster
Institut für Molekulare Zellbiologie
Tel: +49 251 83-23920
grashoff@uni-muenster.de

Originalpublikation:

S. Lemke et al. (2019): A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PLOS Biology; DOI: 10.1371/journal.pbio.3000057

Svenja Ronge | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.uni-muenster.de/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Wenn Mensch und Künstliche Intelligenz gemeinsam Diagnosen stellen
21.03.2019 | Otto-Friedrich-Universität Bamberg

nachricht Augendiagnostik: Malaria früher erkennen
19.03.2019 | Universitätsklinikum Tübingen

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer LED-Leuchtstoff spart Energie

Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weißen LEDs um rund ein Sechstel steigern, was die Energieeffizienz von Beleuchtungssystemen deutlich verbessern kann.

Leuchtdioden oder LEDs können nur Licht einer bestimmten Farbe erzeugen. Mit unterschiedlichen Verfahren zur Farbmischung lässt sich aber auch weißes Licht...

Im Focus: Münchner Lichtquanten-Destillerie

Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren

Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Lichtquanten, Photonen, die ein Team...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantenmaterie fest und supraflüssig zugleich

Forscher um Francesca Ferlaino an der Universität Innsbruck und an der Österreichischen Akademie der Wissenschaften haben in dipolaren Quantengasen aus Erbium- und Dysprosiumatomen suprasolide Zustände beobachtet. Im Dysprosiumgas ist dieser exotische Materiezustand außerordentlich langlebig, was die Tür für eingehendere Untersuchungen weit aufstößt.

Suprasolidität ist ein paradoxer Zustand, in dem die Materie sowohl supraflüssige als auch kristalline Eigenschaften besitzt. Die Teilchen sind wie in einem...

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer LED-Leuchtstoff spart Energie

24.04.2019 | Energie und Elektrotechnik

Control 2019: Fraunhofer IPT stellt High-Speed-Mikroskop mit intuitiver Gestensteuerung vor

24.04.2019 | Messenachrichten

Warum der moderne Mensch aus Afrika kommt

24.04.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics