Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Coronaviren Zellen umprogrammieren

28.04.2017

Interdisziplinäres Team der Universität Gießen identifiziert epigenetische Kontrollmechanismen der Genantwort der Wirtszelle bei Infektionen mit dem Coronavirus 229E

Coronaviren sind weltweit verbreitete wichtige Verursacher von humanen und tierischen Erkrankungen, insbesondere der Atmungsorgane. Durch ihr großes Genom, das größte bekannte Genom aller RNA-Viren, können sie sich besonders vielfältig und schnell an neue Situationen anpassen.

Wie bewerkstelligen die Coronaviren es, den zellulären Stoffwechsel so umzuprogrammieren, dass neue infektiöse Viruspartikel produziert werden?

Und was sind die molekularen Ursachen der unterschiedlichen Krankheitsverläufe durch verschiedene Coronavirus Infektionen? Ein interdisziplinäres Forscherteam der Justus-Liebig-Universität Gießen (JLU)hat nun die Genantwort der Wirtszelle und ihre epigenetischen Kontrollmechanismen entschlüsselt.

Die vier bekannten humanen Coronaviren, zu denen auch das in der Studie untersuchte Coronavirus 229E gehört, verursachen überwiegend relativ milde verlaufende und vorübergehende Infektionen der oberen Luftwege.

„Infektionen mit den ähnlich aufgebauten verwandten zoonotischen Coronaviren SARS-CoV und MERS-CoV hingegen können zu schwersten Lungenentzündungen bis hin zum Lungenversagen führen, wenn diese Viren aus dem Tier in einen menschlichen Wirt wechseln“, so Prof. Dr. John Ziebuhr, Virologe an der JLU. Wie alle Viren benötigen auch Coronaviren einen geeigneten Wirt, um sich zu vermehren.

Nach dem Eindringen in spezifische Wirtszellen wird das Coronavirus-Genom im Zytoplasma infizierter Zellen freigesetzt und dort vermehrt. In den erkrankten Organen finden sich vermehrt Botenstoffe des angeborenen Immunsystems, insbesondere sogenannte Zytokine, und entzündliche Veränderungen.

Basierend auf ihrer Expertise in der Analyse molekularer Entzündungsvorgänge haben Wissenschaftlerinnen und Wissenschaftler aus der Pharmakologie nun in Zusammenarbeit mit Kollegen/innen aus der Virologie, der Biochemie und der Genetik die molekularen Vorgänge in den infizierten Zellen systematisch erfasst.

Bioinformatische Analysen zeigten, dass das virusregulierte Genspektrum vermutlich deutlich komplexere biologische Funktionen steuert, als das einer nur entzündlich aktivierten Zelle. Um besser zu verstehen, wie ein im Zytoplasma replizierendes Virus so umfassend die Genomfunktionen einer Wirtszelle beeinflussen kann, kartierten die Forscherinnen und Forscher fünf epigenetische „Fingerabdrücke“ der DNA-Hüllproteine (den Histonen).

„Wir haben über tausend durch Coronaviren aktivierte DNA-Elemente, sogenannte Enhancer, gefunden, die ein eigenes Muster bilden und offenbar dafür sorgen, dass nur ganz bestimmte Gene des Zellstoffwechsels so aktiviert werden, dass sie dem Virus nützen.

Gleichzeitig werden andere DNA Bereiche im Zellkern abgeschaltet oder ihre Aktivität gedämpft – offenbar um Genprodukte, die die Zellen schützen oder andere Immunzellen anlocken könnten, zu blockieren“, erklärt Marek Bartkuhn, Genetiker und Bioinformatiker an der JLU. Coronaviren führen also zu einer genomweiten Reprogrammierung von Funktionen im Zellkern.

In einem weiteren Ansatz unterbrachen die Forscherinnen und Forscher die Signalwege, die zur Aktivierung des Transkriptionsfaktors NF-κB, einem zentralen genetischen Schalter von Immunvorgängen, führen und untersuchten die Konsequenzen sowohl für die Virusreplikation als auch für die Wirtszellfunktionen. So konnten sie zeigen, dass Coronaviren die Aktivität dieses wichtigen Faktors deutlich hemmen – wodurch eine mögliche Abwehrreaktion der Wirtszelle abgeschwächt wird –, aber nicht komplett aufheben. Dadurch bleiben bestimmte Zellfunktionen noch erhalten, die das Virus offenbar braucht.

„Diese Daten sind ein sehr interessantes Beispiel dafür, wie clever Mikroben die Balance von intrazellulären Signalwegen beeinflussen, um sich einen Vorteil zu verschaffen“, sagt Prof. Dr. Lienhard Schmitz vom Biochemischen Institut der JLU, der schon seit Jahren zusammen mit dem Leiter der Studie, dem Pharmakologen Prof. Dr. Michael Kracht vom Rudolf-Buchheim-Institut für Pharmakologie der JLU, das NF-κB-System molekular untersucht. „Wir haben im Rahmen dieser Untersuchungen einerseits besser verstanden, wie ein Coronavirus mechanistisch funktioniert“, so Prof. Kracht. „Zum anderen haben wir mit Hilfe von pharmakologischen Substanzen und neuen genetischen Methoden wie der RNA-Interferenz und der Genschere Crispr/Cas9 auch Wege gefunden, die Coronavirus-spezifischen Gene gezielt zu hemmen.“

Diese Ansätze sollen nun im Rahmen der neuen klinischen Forschergruppe (KFO 309 „Virus-induziertes Lungenversagen – Pathobiologie und neue Therapiestrategien“), die sich mit Virusinfektionen der Lunge beschäftigt, in krankheitsnäheren Situationen weiterentwickelt werden. Die Wissenschaftlerinnen und Wissenschaftler hoffen, dass man in Zukunft das Ausmaß der Zellschädigung bei einer Coronavirus-Infektion anhand der Gensignatur voraussagen und dann mit Medikamenten, die im Zellkern angreifen, die weitere Aktivierung dieser Gene verhindern kann.

Prof. Kracht hebt die intensive Zusammenarbeit der beteiligten Wissenschaftlerinnen und Wissenschaftler hevor: „Nur die von der Deutschen Forschungsgemeinschaft geförderten Forschungsverbünde TRR81 ‚Chromatin changes in differentiation and malignancies‘ und SFB1021 ‚RNA viruses: RNA metabolism, host response and pathogenesis‘ bündeln die für ein derartig aufwändiges Projekt notwendige biomedizinische Expertise, stellen die Plattformen an wissenschaftlichen Methoden bereit und ermöglichen uns so eine internationale Sichtbarkeit in diesem Forschungsbiet.“

Publikation
Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J, Muller H, Beuerlein K, Karl N, Bhuju S, Ziebuhr J, Schmitz ML, Kracht M. 2017: The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells.
PLoS Pathog 13:e1006286. DOI: 10.1371/journal.ppat.1006286
Online: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006286

Kontakt

Prof. Dr. Michael Kracht
Rudolf-Buchheim-Institut für Pharmakologie
Biomedizinisches Forschungszentrum Seltersberg (BFS)
Schubertstraße 81, 35392 Gießen
Telefon: 0641 99-47600/-39740
E-Mail: Michael.Kracht@pharma.med.uni-giessen.de

Weitere Informationen:

http://www.uni-giessen.de/cms/rbi

Lisa Dittrich | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-giessen.de/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Krankheitserreger im Visier
09.10.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Wie überleben Nervenzellen? Forschungsteam versucht den Zelltod zu stoppen
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics