Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues EU-Projekt "HarWin": Hohe Energieeffizienz durch innovative Fenstermaterialien

08.10.2012
Neuartige Fenster zu entwickeln, die den Energieverbrauch von Gebäuden signifikant senken und zugleich die Wohnqualität erhöhen – dies ist das Ziel eines neuen Forschungs- und Entwicklungsprojekts, das von der Europäischen Union in den nächsten drei Jahren mit rund 3,4 Mio. Euro gefördert wird.
An dem Projekt sind 10 europäische Hochschulen, Forschungseinrichtungen und Unternehmen beteiligt. Die Koordination liegt bei Prof. Dr. Monika Willert-Porada, die an der Universität Bayreuth den Lehrstuhl für Werkstoffverarbeitung innehat. Am 2. Oktober 2012 trafen sich die Projektpartner zum Kick-off-Meeting in Bayreuth, um die weiteren Arbeitsschritte festzulegen.

Der Projektname "Harvesting solar energy with multifunctional glass-polymer windows" – kurz: "HarWin" – verweist auf das anspruchsvolle Vorhaben, 'intelligente' Fenster aus laminierten Kunststoff-Glas-Verbundmaterialien zu entwickeln. Diese Materialien sollen eine Mehrfachverglasung überflüssig machen und mit Hilfe von Leichtbaustrukturen, die erheblich leichter als die bisher üblichen Fensterscheiben sind, die Energieeffizienz von Gebäuden erhöhen.

Wichtige Funktionen wie Wärmedämmung und Schallschutz werden dadurch aber nicht beeinträchtigt. Im Gegenteil, neuartige Polymer-Glas-Verbundstrukturen machen es möglich, die Energie des Sonnenlichts optimal für den Energiehaushalt von Gebäuden zu nutzen. Anti-Reflektionsschichten verhindern, dass Sonnenlicht nach außen zurückgespiegelt wird. Zugleich wird der Austausch von Wärmeenergie verringert, so dass mehr Wärme in den Räumen verbleibt, statt über die Fenster nach außen abzufließen.
Zusätzlich zu dieser optimierten Wärmedämmung sollen die Polymer-Glas-Verbundstrukturen signifikant zur Schalldämmung beitragen. Und alle diese Vorteile sollen sowohl Wohn- als auch Gewerbegebäuden zugutekommen. Eine besondere technische Anforderung liegt darin, die Transparenz und die Bruchsicherheit der Fenster nicht zu vermindern, sondern gleichfalls zu steigern.

Mit diesen Projektzielen fügt sich „HarWin“ in das 7. Rahmenprogramm der Europäischen Union ein, die energieeffiziente Gebäude ("Energy Efficient Buildings") als eine besondere Herausforderung für ihre künftige Förderpolitik definiert hat. Daher übernimmt die EU fast drei Viertel der Projektkosten von rund 4,9 Mio. Euro, knapp 1,5 Mio. Euro tragen die Projektpartner bei.
Zusammen mit der Universität Bayreuth bringen das Fraunhofer-Institut für Silikatforschung in Würzburg und die Technische Universität Szczecin in Polen ihre Forschungskompetenzen in das Projekt ein; seitens der gewerblichen Wirtschaft nehmen sechs Industriepartner aus Deutschland, Finnland, der Schweiz, Belgien und Großbritannien teil. Die Bayerische Forschungsallianz unterstützt HarWin beim Projektmanagement und der Öffentlichkeitsarbeit, sie war auch aktiv an der Antragsvorbereitung beteiligt.

Die materialwissenschaftlichen Voraussetzungen für das neue EU-Projekt hat – wiederum unter der Leitung von Prof. Dr. Monika Willert-Porada – der Bayerische Forschungsverbund "FORGLAS" ("Multifunktionale Werkstoffe aus Glas für energieeffiziente Gebäudetechnologien") geschaffen, den die Bayerische Forschungsstiftung von 2009 bis 2012 mit 2,2 Mio. Euro gefördert hat.
Die 17 Projektpartner aus Wissenschaft und Industrie haben gemeinsam äußerst vielversprechende Polymer-Glas-Verbundmaterialien entwickelt. Diese bestehen aus Kunststoffbahnen, in die feinste Glaspartikel mit definierten Abmessungen und Formen eingelassen sind. Im Projekt "HarWin" sollen diese Verbundmaterialien optimiert und zu laminierten Glasscheiben weiterentwickelt werden, die im Hinblick auf Wärme- und Schalldämmung Vorteile bieten, die mit laminiertem Glas bisher nicht erreicht wurden.

"Bei unserem Kick-off-Meeting waren sich alle Projektpartner darin einig, dass wir nicht bei reinen Forschungsergebnissen stehenbleiben wollen, sondern gezielt auf eine industrielle Umsetzung der Ergebnisse hinarbeiten werden", berichtet Prof. Dr. Monika Willert-Porada. "'Harwin' soll ein Beispiel dafür sein, wie Wissenschaft und Industrie auf dem Gebiet der Energieeffizienz kooperieren und innovative Produkte auf den Weg bringen können."

An der Universität Bayreuth ist – zusammen mit dem koordinierenden Lehrstuhl für Werkstoffverarbeitung – auch der Lehrstuhl für Konstruktionslehre und CAD unter der Leitung von Prof. Dr.-Ing. Frank Rieg an den Entwicklungsarbeiten im neuen EU-Projekt beteiligt. Als "Third Party" der Universität Bayreuth hat die Neue Materialien Bayreuth GmbH einen maßgeblichen Anteil an der Entwicklung der für die neuartigen Polymer-Glas-Verbundscheiben erforderlichen Leichtbau-Rahmen aus Glasfaser-Polymer-Verbundstrukturen.
Kontaktadresse für weitere Informationen:

Prof. Dr. Monika Willert-Porada
Lehrstuhl für Werkstoffverarbeitung
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55 7200 und -7201
E-Mail: monika.willert-porada@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Wenn Blutgefäße zu durchlässig sind
01.10.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Sensoren aus bioinspirierten Nanoporen
27.09.2019 | Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics