Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Geheimnis starker Zähne: Nanostrukturen unter Spannung

10.06.2015

Wissenschaftler entdecken Grundlagen für neue keramische Materialien

Einem interdisziplinären Team um Forscher der Charité – Universitätsmedizin Berlin ist es gelungen, die Biostruktur der Zahnsubstanz Dentin und deren innere Mechanismen zu entschlüsseln. Anders als Knochen kann Dentin Risse oder Brüche weder reparieren noch heilen.


Biostruktur des Dentin: Tubuli und Netz von Kollagenfasern, in denen mineralische Nanopartikel eingebettet sind – angespannt links, entspannt rechts

Jean-Baptiste Forien, © Charité – Universitätsmedizin Berlin

Es gilt allerdings als eines der beständigsten organischen Materialien. Wie die Wissenschaftler nun erstmals zeigen: Innere Spannungen sorgen dafür, dass Schäden nicht entstehen oder begrenzt bleiben. Was zur Widerstandskraft gesunder Zähne führt, ist in der Fachzeitschrift Nano Letters* veröffentlicht.

Einem interdisziplinären Team um Forscher der Charité – Universitätsmedizin Berlin ist es gelungen, die Biostruktur der Zahnsubstanz Dentin und deren innere Mechanismen zu entschlüsseln. Anders als Knochen kann Dentin Risse oder Brüche weder reparieren noch heilen.

Es gilt allerdings als eines der beständigsten organischen Materialien. Wie die Wissenschaftler nun erstmals zeigen: Innere Spannungen sorgen dafür, dass Schäden nicht entstehen oder begrenzt bleiben. Was zur Widerstandskraft gesunder Zähne führt, ist in der Fachzeitschrift Nano Letters* veröffentlicht.

Zähne halten im Idealfall ein Leben lang, auch wenn sie täglich enormen Kräften ausgesetzt sind. Bislang war unklar, warum das Dentin, eine knochenähnliche Substanz, die den eigentlichen Zahn bildet, so belastbar ist. Das Team um Dr. Paul Zaslansky am Julius Wolff Institut (JWI) der Charité hat nun die Nanostrukturen von Dentin analysiert. Mineralische Nanopartikel sind demnach in ein dichtes Netz aus Kollagenfasern eingebettet. Ziehen sich diese Strukturen zusammen, werden die Mineralteilchen komprimiert. Die dabei entstehenden inneren Spannungen erhöhen die Belastbarkeit der Biostruktur.

Einblick in die winzigen Strukturen haben die Forscher durch die Arbeit an wissenschaftlichen Großgeräten erhalten, die hochbrillante Strahlung von Tetrahertz- bis in den Röntgenbereich erzeugen: Die Synchrotronquelle BESSY II des Helmholtz-Zentrums Berlin für Materialien und Energie und die ESRF – European Synchrotron Radiation Facility in Grenoble. Das Wissen um innere Vorspannungen wird in den Ingenieurwissenschaften bewusst eingesetzt, um Materialien für technische Anwendungen gezielt zu verstärken. Die Biologie kennt diesen Trick offenbar schon viel länger und wendet ihn in unseren Zähnen an.

Um das Prinzip nachzuweisen, haben die Forscher die Feuchtigkeit in Dentinproben verändert. Die Messungen zeigen, wie die Spannung der Mineralpartikel zunimmt, wenn die Strukturfasern schrumpfen. „Dieser Mechanismus trägt dazu bei, das Entstehen von Rissen zu verhindern. Die Art und Weise der Kompression sorgt zudem dafür, dass die innersten Bereiche des Zahns und damit die empfindliche Pulpa weitgehend vor Schäden geschützt bleiben“, erklärt Dr. Paul Zaslansky vom Julius Wolff Institut der Charité.

Die Wissenschaftler stellten in weiteren Experimenten fest, dass die Verbindung zwischen Mineralpartikeln und Kollagenfasern durch Erhitzen geschwächt wird, wobei die Belastbarkeit von Dentin abnimmt. “Wir glauben, dass die inneren Spannungen zwischen Mineralpartikeln und Kollagenfasern im Gleichgewicht sein müssen. Das ist entscheidend für eine dauerhafte Belastbarkeit von Zähnen“, sagt Jean-Baptiste Forien, Erstautor der Studie.

Die Erkenntnisse erklären, warum künstlicher Zahnersatz weniger belastbar ist als gesunde Zahnsubstanz: Die keramischen Materialien sind einfach zu „passiv“ gegenüber Belastung, da ihnen die inneren Mechanismen fehlen, die der natürlichen Zahnsubstanz zu Stabilität verhelfen. „Vielleicht liefern die Ergebnisse der Arbeit Anregungen für die Entwicklung belastbarer keramischer Materialien zur Zahnbehandlung oder als Zahnersatz”, hofft Dr. Zaslansky.

An der DFG-geförderten Untersuchung zur Nanostruktur des Dentins waren neben den Charité-Wissenschaftlern Teams der Technischen Universität Berlin, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung, Potsdam und des Technion – Israel Institute of Technology, Haifa beteiligt.

*Jean-Baptiste Forien, Claudia Fleck, Peter Cloetens, Georg Duda, Peter Fratzl, Emil Zolotoyabko, Paul Zaslansky. Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin. Nano Letters. 2015 May 29. doi: 10.1021/acs.nanolett.5b00143.

Kontakt:
Dr. Paul Zaslansky
Julius Wolff Institut
Berlin-Brandenburg Center for Regenerative Therapies (BCRT)
Charité – Universitätsmedizin Berlin
t: +49 30 450 559 589
E-Mail: paul.zaslansky@charite.de

Weitere Informationen:

http://www.charite.de
http://jwi.charite.de
http://www.esrf.eu
https://www.helmholtz-berlin.de
http://www.mpikg.mpg.de
http://www.technion.ac.il/en/
http://www.tu-berlin.de

Dr. Julia Biederlack | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht Nanopartikel aus Kläranlagen - vorläufige Entwarnung
02.05.2018 | Universität Siegen

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics