Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blitzschnell und pünktlich am Ziel

29.05.2012
Mit einem kleinen, hocheffizienten neuronalen Netzwerk beherrschen Schützenfische die Gesetze der Ballistik

Die Fähigkeit, auf der Jagd nach Beute zur richtigen Zeit am richtigen Ort zu sein, ist im Tierreich überlebenswichtig. Sie beruht auf neuronalen Netzwerken, die Sinneseindrücke, die Auswahl von Handlungsoptionen und motorische Bewegungen präzise aufeinander abstimmen. Schützenfische können derartige Aufgaben mit nur wenigen hundert Neuronen äußerst erfolgreich lösen, wie Prof. Dr. Stefan Schuster – Lehrstuhl für Tierphysiologie an der Universität Bayreuth – in einem aktuellen Beitrag für die Zeitschrift „Current Opinion in Neurobiology“ zeigt. Die an Fischen erzielten Forschungsergebnisse können grundsätzlich dazu beitragen, tiefer in die neuronalen Grundlagen von Entscheidungsprozessen vorzudringen.


Schützenfische unter der Wasseroberfläche.
Foto: Lehrstuhl für Tierphysiologie, Universität Bayreuth

Wie sich das Jagdverhalten den Gesetzen der Ballistik anpasst
Schützenfische sind vor allem in tropischen Brackwassergebieten zuhause. Sie ernähren sich mit Vorliebe von Insekten, die sich auf Blättern und Halmen von Pflanzen dicht am Ufer niederlassen. Mit einem scharfen gezielten Wasserstrahl gelingt es den Fischen, die Insekten seitlich von unten anzuschießen, so dass diese im hohen Bogen ins Wasser fallen. Damit ein Schützenfisch seiner Beute habhaft werden kann, muss er sich blitzschnell dorthin begeben, wo das Insekt auf die Wasseroberfläche trifft. Andernfalls ist die Gefahr groß, dass ihm die Beute von einem Artgenossen oder einem anderen Fisch weggeschnappt wird. Denn Schützenfische leben nicht nur in Schwärmen, sondern müssen auch mit einer Vielzahl anderer Oberflächenfische um die abgeschossene Beute konkurrieren.

In einem von der Deutschen Forschungsgemeinschaft geförderten Forschungsprojekt untersucht Prof. Dr. Stefan Schuster seit mehreren Jahren die Frage, wie es den Schützenfischen gelingt, rechtzeitig – noch während die getroffene Beute im hohen Bogen herabfällt – genau dorthin zu schwimmen, wo sie auftreffen wird. Er hat herausgefunden, dass der Schützenfisch nur drei Informationen benötigt, um die Beute pünktlich an der Wasseroberfläche in Empfang nehmen zu können: Sobald der ‚Schuss aus dem Wasser’ das Insekt getroffen hat, nimmt der Fisch durch optische Sinnesreize wahr, an welcher Stelle über der Wasseroberfläche es sich befindet, in welche Richtung es sich bewegt und welche Geschwindigkeit es dabei hat. Als würde er die Gesetze der Ballistik kennen, setzt sich der Schützenfisch zielgenau und mit der erforderlichen Geschwindigkeit in Bewegung.

Keine alternativlosen Reflexe, sondern Entscheidungen zwischen Optionen
Die Schützenfische können also auf die Informationen, die sie zu einem beliebigen Zeitpunkt über Ort, Richtung und Geschwindigkeit ihrer Beute gewonnen haben, blitzschnell und präzise reagieren – ohne ihr Schwimmverhalten zu einem späteren Zeitpunkt nachjustieren zu müssen.

„Das ist eine erstaunliche Leistung, die nicht zu verwechseln ist mit einem alternativlosen Reflex“, erläutert Schuster. „Denn unsere Experimente haben gezeigt, dass dem Schwimmverhalten der Fische eine komplexe Entscheidung zugrunde liegt, nämlich eine Auswahl aus einem Kontinuum verschiedener Handlungsoptionen.“

Dies wird besonders deutlich in Ausnahmesituationen, die sich mit einem geeigneten Versuchsaufbau künstlich erzeugen lassen. Dabei werden die Fische mit zwei Beuteobjekten konfrontiert, die zeitgleich und gleich schnell, aber in unterschiedliche Richtungen fallen. Das neuronale System des Schützenfisches ist leistungsstark genug, um die sich daraus ergebenden Handlungsoptionen zu bewerten und eine klare Entscheidung zu treffen. Der Fisch startet so, dass er sicher zu derjenigen Beute geführt wird, deren spätere Ankunftsstelle auf dem Wasser der eigenen Startposition am nächsten liegt.

Mauthner-Zellen: Steuerungszentralen des Jagdverhaltens

Im Bayreuther Laboratorium haben Schuster und seine Mitarbeiter das neuronale Netzwerk der Schützenfische genauer untersucht, insbesondere mithilfe der Elektrophysiologie und der Zwei-Photonen-Mikroskopie. Jeder Schützenfisch verfügt im hinteren Bereich des Gehirns über ein Paar sogenannter Mauthner-Zellen. Es handelt sich dabei um besonders große Nervenzellen, die bei anderen Knochenfischen das Fluchtverhalten steuern. Sobald ein Schützenfisch den Ort, die Richtung und die Geschwindigkeit seiner Beute wahrgenommen hat, feuert eine der beiden Zellen Signale ab. Diese lösen – im Konzert mit weiteren Zellen des Netzwerks – den Start des Fisches aus, der dabei durch eine Längskrümmung seines Körpers eine charakteristische C-förmige Gestalt annimmt. Der Start muss so gewählt werden, dass der Drehwinkel des Fisches und seine Startgeschwindigkeit exakt zu dem späteren Landepunkt der Beute passen, so dass der Fisch genau zum richtigen Zeitpunkt am richtigen Ort sein wird.

„Da der Schützenfisch für seine komplexe Entscheidung nur extrem wenig Zeit hat, muss er dafür ein sehr kleines hocheffizientes Netzwerk verwenden“, erklärt Schuster. „Das eröffnet uns die einmalige Chance, erstmalig und auf zellulärer Ebene zu einem Verständnis vorzudringen, wie Gesetzmäßigkeiten der Umwelt – beispielsweise die Fallgesetze mit und ohne Luftreibung – in unserem Nervensystem einprogrammiert sind.“ Die DFG unterstützt diese Untersuchungen im Rahmen ihrer Reinhart Koselleck-Projekte, die nach ihren Worten darauf abzielen, „besonders innovative und im positiven Sinne risikobehaftete“ Forschungsarbeiten zu fördern.

Veröffentlichung:
Stefan Schuster,
Fast-starts in hunting fish: decision-making in small networks of identified neurons
in: Current Opinion in Neurobiology 2012, 22, pp. 279–284
DOI: 10.1016/j.conb.2011.12.004
Zu den Reinhart-Koselleck-Projekten der DFG:
www.dfg.de/foerderung/programme/einzelfoerderung/reinhart_koselleck_projekte/
Kontaktadresse für weitere Informationen:
Prof. Dr. Stefan Schuster
Lehrstuhl für Tierphysiologie
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49-(0)921 / 55-2470 und -2471 /
E-Mail: stefan.schuster@uni-bayreuth.de
Text und Redaktion:
Christian Wißler M.A.
Stabsstelle Presse, Marketing und Kommunikation Universität Bayreuth
D-95440 Bayreuth
Tel.: 0921 / 55-5356 / Fax: 0921 / 55-5325
E-Mail: mediendienst-forschung@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Verformung mit Fingerspitzengefühl
13.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Wie Parasiten Leberkrebs erzeugen
02.08.2018 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics