Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018

Interdisziplinäre Forschung zwischen Hydrodynamik und Biophysik

Ein internationales Physikerteam von der Heinrich-Heine-Universität Düsseldorf (HHU), aus den USA und Chile untersuchte und modellierte, wie sich Biofilme mit Nährstoffen versorgen. Daraus können die Forscher Strategien ableiten, wie gefährlichen Biofilmen die Nahrungsversorgung abgeschnitten werden kann. Ihre Ergebnisse präsentieren sie in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters.


Bewegungsmuster auf einem ebenen Biofilm (blau-rot gefärbt) und dadurch erzeugte Flusslinien vom Lösungsmittel (blau), die für den Transport von Nährstoffen (bunte Kugeln) sorgen.

Stanford University / Arnold J. T. M. Mathijssen

„Biofilme“ sind schleimig-glitschige Beläge von Mikroorganismen, die sich auf Gegenständen, aber auch Gewebe ablagern. Handelt es sich bei den Mikroorganismen zum Beispiel um Bakterien, bergen diese Biofilme unter Umständen erhebliche Gesundheitsgefahren.

Solche Biofilme können etwa bakterielle Zahnbeläge sein, die zu Karies und Parodontitis führen. Doch so einfach ist das Leben der Mikroorganismen in den Filmen nicht, denn sie benötigen Nährstoffe.

In einer weltumspannenden Kooperation haben Physiker vom Institut für Theoretische Physik II der HHU, aus Stanford (USA), Argonne (USA) und Santiago de Chile untersucht, wie die Mikroorganismen ihre Nährstoffversorgung sicherstellen können.

Dazu haben sie betrachtet, welche Bewegungsstrategien die einzelnen Bakterien ausführen müssen, um so eine Strömung zu erzeugen. Der entstehende Wasserfluss sollte dann gleichsam automatisch die Nährstoffe zu ihnen herantragen und die Bakterien optimal versorgen. Dazu haben die Forscher eine umfangreiche mikro-hydrodynamische Theorie entwickelt und für verschiedene Bewegungstypen analysiert.

„Führen alle Bakterien die gleichen Bewegungen aus, führt das zum Stillstand des Wasserflusses und damit zu ihrem sicheren Hungertod", so Prof. Dr. Hartmut Löwen, HHU-Physiker und Mitautor der Studie.

Diversität oder Inhomogenität in den Bewegungen erzeugt dagegen wie von selbst eine weitreichende und zum Biofilm hingerichtete Strömung, über die dann Nährstoffe herangetragen werden.

Durch Musterbildung auf den Biofilmen kann der Zufluss gesteuert werden. Dabei entdeckten die Wissenschaftler ein verblüffend einfaches Baukastenprinzip, mit dem man systematisch Flüsse überlagern kann. Die Ergebnisse ihrer Berechnungen stellen die Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters vor.

Das über Nährstoffversorgung entscheidende Flussfeld ist normalerweise nicht direkt sichtbar. „Deswegen“, so Prof. Löwen, „wollten wir es durch unsere Rechnungen sichtbar machen. Wir stießen dabei auf ein allgemeines Prinzip, welches ein hohes Anwendungspotential besitzt.“

Denn über die Störung des Zuflusses kann es gelingen, Bakterienkolonien ohne Gift zu zerstören. Andererseits erreicht man bei gewünschten Biofilmen durch intelligente Kooperation der Mikroorganismen eine weitflächige Nahrungsmittelversorgung.

Dieses Prinzip ist nicht auf Bakterien beschränkt, sondern es gilt auch für Mikroroboter oder „künstliche Schwimmer“ – letztere sind Partikel, die sich mittels Brennstoffen in Bewegung setzen können und zum Beispiel potenziell dazu verwendet werden können, um Medikamente im menschlichen Körper zu einem gewünschten Zielort zu transportieren.

Originalpublikation:

A. J. T. M. Mathijssen, F. Guzman-Lastra, A. Kaiser, H. Löwen, Nutrient transport driven by microbial active carpets, Physical Review Letters 121, 248101 (2018).
DOI: 10.1103/PhysRevLett.121.248101

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Mit Hightech-Analytik besser erkennen, ob der Krebs zurückkehrt
11.02.2020 | Deutsches Krebsforschungszentrum

nachricht Dem Blick folgen – Die Handprothese verbessern
11.02.2020 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics