Stickstoffmonoxid geht im Körper andere Wege als bislang vermutet

Das Gas Stickstoffmonoxid (NO) mischt im Körper des Menschen an vielen Stellen mit: Es entspannt die glatte Muskulatur, erweitert die Blutgefäße oder wirkt der Entstehung von Blutgerinnseln entgegen. Die bislang verbreitete Vorstellung über die Arbeitsweise dieses Botenstoffs muss nun ergänzt werden. Das haben Wissenschaftler von den Universitäten Würzburg und Gießen herausgefunden. Ihre Ergebnisse stellen sie in der Zeitschrift „Nature Cell Biology“ vor.

Es ist kein Wunder, dass Forscher genau wissen wollen, wie Stickstoffmonoxid im Körper wirkt – schließlich kommt dieses Gas für die Behandlung von Krankheiten in Frage. Beispiel: Ein Herzpatient bekämpft seine Angina pectoris mit einem Nitrospray. Aus diesem Mittel wird in seinem Körper NO freigesetzt: Die Herzkranzgefäße erweitern sich, das Engegefühl in der Brust verschwindet.

Die Forschung kann umso gezielter Medikamente entwickeln, je besser sie die Abläufe im Organismus kennt. Was das Stickstoffmonoxid angeht, so herrschte bisher folgende Überzeugung vor: NO kann im Körper problemlos durch die Zellmembranen hindurchtreten und im Inneren der Zellen seinen Rezeptor erreichen. Dieser wird aktiviert und erhöht darauf hin die Konzentration eines zweiten Botenstoffes (cGMP). Dadurch werden Prozesse angestoßen, die letztlich für die spezifische Wirkung von NO verantwortlich sind.

Dr. Christoph Kleinschnitz von der Neurologischen Klinik der Uni Würzburg: „Es gab Hinweise darauf, dass dieses klassische Konzept nicht ganz richtig sein kann, etwa die Tatsache, dass Stickstoffmonoxid in einer Zellmembran besser löslich ist als im Zellinneren.“ Salopp gesagt: Das stickstoffhaltige Gas hält sich vermutlich viel lieber in der Zellmembran auf und macht sich eher ungern auf die Suche nach seinem Rezeptor im Inneren der Zelle.

Darum beschlossen Würzburger und Gießener Wissenschaftler zusammen mit Kollegen aus San Diego, das Konzept der Wirkungsweise von NO zu überprüfen. Sie fanden heraus, dass der NO-Rezeptor, die lösliche Guanylylcyclase, keineswegs ein rein lösliches Protein ist, wie man seit mehr als 20 Jahren meinte. Stattdessen ist der Rezeptor in vielen Zellverbänden von Mensch und Tier – etwa in der Blutgefäßwand, im Herzmuskel und in Blutplättchen – zu einem gewissen Teil mit der Zellmembran verbunden.

Dort befindet sich der Rezeptor in unmittelbarer Nachbarschaft zu den Enzymen, die Stickstoffmonoxid produzieren. Diese räumliche Nähe ist sinnvoll, weil NO ja die Membran nicht so gerne verlässt und weil es zudem nicht sonderlich stabil ist und schnell zerfällt. Außerdem fanden die Forscher heraus, dass der mit einer Membran verknüpfte Rezeptor viel empfindlicher auf NO reagiert als der lösliche Rezeptor.

Der Artikel „Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide“ von Ulrike Zabel, Christoph Kleinschnitz, Oh Phil, Pavel Nedvedsky, Albert Smolenski, Helmut Müller, Petra Kronich, Peter Kugler, Ulrich Walter, Jan E. Schnitzer und Harald H. H. W. Schmidt, wurde in der Online-Version von „Nature Cell Biology“ vorab am 4. März 2002 publiziert. In gedruckter Form wird er im April erscheinen.

Media Contact

Robert Emmerich idw

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer