Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Präzisionsgesteuerte Zellwanderung

07.03.2002


Präzisionsgesteuerte Zellwanderung
Botenstoffe des Immunsystems als Quartiermeister

Die Schlagkraft des Immunsystems hängt entscheidend von der Mobilität und Lernfähigkeit der Abwehrzellen ab. Treibende Kraft dabei sind Botenstoffe des Immunsystems, so genannte Chemokine. Sie locken Immunzellen (T- und B-Lymphozyten) zu einem Infektions- oder Entzündungsort. Sie weisen ihnen aber auch den Weg zu ihren Ausbildungsstätten in den Lymphorganen, den T- und B-Zell-Zonen, wo sie lernen, Erreger zu erkennen und zu vernichten. Jetzt konnten Wissenschaftler in den USA gemeinsam mit PD Dr. Martin Lipp (Max-Delbrück-Centrum für Molekulare Medizin, MDC, Berlin-Buch in der Helmholtz-Gemeinschaft) zeigen, dass die Botenstoffe nicht nur als Wegweiser und Ausbilder fungieren, sondern auch als Quartiermeister. Sie legen fest, welche Immunzelle zu welchem Zeitpunkt in welche Ausbildungszone gelangt. Die Arbeit von Dr. Karin Reif, Eric Ekland und Dr. Jason Cyster (Howard Hughes Medical Institute und Universität von Kalifornien, San Francisco/USA), Dr. Lipp sowie Prof. Reinhold Förster (Universität Erlangen) und Dr. Hideki Nakano (Toho Universität, Tokyo/Japan) ist jetzt in der Zeitschrift Nature (Volume 416, Number 6876, pp 94-99) * erschienen.

Chemokine sind von körpereigenen Zellen gebildete Signalstoffe. Ihre Bildung wird aktiviert von verschiedenen Faktoren, unter anderem von dem Genregulationsfaktor NF-kappaB. Solche Faktoren senden zum Beispiel bei Virusinfektionen oder Entzündungsprozessen, Signale aus. Immunzellen können diese Signale mit speziellen Antennen, den Chemokin-Rezeptoren empfangen und sich damit den richtigen Weg zeigen lassen. Dr. Lipp und seine Mitarbeiter hatten vor wenigen Jahren als erste einen Chemokin-Rezeptor auf B-Lymphozyten nachweisen können, der das zielgerichtete Wanderverhalten von Immunzellen in die B-Zell-Zonen und Keimzentren steuert.

Lymphozyten gehen aus dem Knochenmark hervor und werden in zwei große Gruppen unterteilt: die T-Lymphozyten - so benannt nach einem kleinen über dem Herzen liegenden Organ, in dem sie heranreifen, der Thymusdrüse - und die B-Lymphoyzten (B-Zellen), die sich im Knochenmark entwickeln. Die herangereiften B- und T-Zellen sind jedoch noch nicht voll funktionstüchtig. Sie müssen erst auf Wanderschaft gehen und in verschiedenen Stationen - zum Beispiel in der Milz und in den Lymphknoten - ein Ausbildungsprogramm absolvieren. Dort treffen sie auf bereits von anderen Immunzellen dingfest gemachte Erreger, die quasi zur Fahndung ausgeschrieben sind und deren Merkmale sich die B- und T-Zellen einprägen müssen.

T- und B-Zell-Zonen in den Lymphorganen
Dies geschieht in den T-Zell- und B-Zell-Zonen der Lymphknoten und Milz sowie in den so genannten Keimzentren, die sich innerhalb der B-Zell-Zone entwickeln. Dort reifen die Lymphozyten aus und werden für ihre Aufgabe bei der Immunabwehr fit gemacht. In den Keimzentren werden die B-Zellen beispielsweise so geschult, dass sie nicht nur hochaktive Antikörper zur Bekämpfung von Erregern produzieren, sondern auch ihr "immunologisches Gedächtnis" ausbilden. In den Lymphorganen tauschen sie zudem Informationen über Eindringlinge aus, um eine Armada spezialisierter Zellen für deren Bekämpfung zu mobilisieren. Dieses fein ausbalancierte Zusammenspiel zwischen benachbarten Territorien wird durch Chemokine und ihre Rezeptoren gesteuert und ist mitentscheidend für ein funktionierendes Immunsystem. Kann dieses Zusammentreffen nicht stattfinden, etwa weil die Immunzellen den Weg zu den "Informationszentralen" innerhalb der T-Zell oder B-Zell-Zone nicht finden, ist die Immunantwort des Körpers gestört.


*Responsiveness to chemoattractants from adjacent microenvironments determines B-cell position
Karin Reif* , Eric H. Ekland* , Lars Ohl, Reinhold Förster , Hideki Nakano$, Martin Lipp§, and Jason Cyster*
*Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0414, USA; §Molecular Tumorgenetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, MDC, 13092 Berlin, Germany; $Department of Immunology, Toho University School of Medicine, Ota-Ku, Tokyo 143-8540, Japan, ; University Clinic for Surgery, Nikolaus-Fiebiger-Center, 91054 Erlangen, Germany

Weitere Informationen erhalten Sie von der Pressestelle des
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Strasse 10; 13125 Berlin
Tel.: 0049/30/94 06 - 38 96; Fax: 0049/30/94 06 - 38 33
E-Mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de

Weitere Berichte zu: B-Zell-Zone Immunsystem Immunzelle Keimzentren T-Zelle Zellwanderung

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Modellierung zeigt optimale Größe für Platin-Katalysatorpartikel Aktivität von Brennstoffzellen-Katalysatoren verdoppelt
03.07.2019 | Technische Universität München

nachricht Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?
14.06.2019 | Otto-von-Guericke-Universität Magdeburg

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Großes Potenzial: Aktoren und Sensoren mit 3D-Druck in komplexe Bauteile integrieren

Der additiven Fertigung wird eine große Zukunft vorhergesagt. So lassen sich mit Hilfe des 3D-Drucks beispielsweise die Anzahl der Komponenten komplexer, individualisierter Baugruppen stark reduzieren und viele Funktionen direkt in ein Bauteil integrieren. Das vereinfacht den Herstellungsprozess und verringert den notwendigen Bauraum. Um diese Vorteile auch für mechatronische Systeme zu nutzen, forschen Wissenschaftler im Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF in mehreren Projekten an der additiven Fertigung von integrierten Aktoren und Sensoren. Diese können in Leichtbaustrukturen störende oder schädigende Vibrationen mindern sowie Strukturen überwachen.

Aufgrund der Ergebnisse ihrer Forschungsprojekte sehen die Wissenschaftler des Fraunhofer LBF großes Potenzial für die additive Fertigung mechatronischer...

Im Focus: Megakaryozyten als „Türsteher“ und Regulatoren der Zellmigration im Knochenmark

In einer neuen Studie zeigen Wissenschaftler der Universität Würzburg und des Universitätsklinikums Würzburg, dass Megakaryozyten als eine Art „Türsteher“ auftreten und so die Eigenschaften von Knochenmarksnischen und die Dynamik der Zellmigration verändern. Die Studie wurde im Juli im Journal „Haematologica“ veröffentlicht.

Die Hämatopoese ist der Prozess der Bildung von Blutzellen, der überwiegend im Knochenmark auftritt. Das Knochenmark produziert alle Arten von Blutkörperchen:...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt,...

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kosmos-Konferenz: Navigating the Sustainability Transformation in the 21st Century

17.07.2019 | Veranstaltungen

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Technik zur besseren Kontrolle für den Supervulkan von Campi Flegrei

17.07.2019 | Geowissenschaften

Bei Bakterien bestimmen die Nachbarn mit, welche Zelle zuerst stirbt: Physiologie des Überlebens

17.07.2019 | Biowissenschaften Chemie

Hocheffiziente Solarzellen dank solidem Fundament

17.07.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics