Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DFG: 15,2 Millionen DM für zwei Göttinger Sonderforschungsbereiche

14.12.2001


Die Deutsche Forschungsgemeinschaft (DFG) hat in ihrer diesjährigen Herbstsitzung die Einrichtung eines neuen naturwissenschaftlichen Sonderforschungsbereichs an der Universität Göttingen bewilligt. Für die Forschungen in dem zunächst auf drei Jahre angelegten SFB 602 "Komplexe Strukturen in kondensierter Materie von atomarer bis mesoskopischer Skala", der zum Januar 2002 seine Arbeit aufnehmen wird, erhält die Hochschule rund acht Millionen DM. Weitere 7,2 Millionen DM stellt die DFG für den bereits seit 1993 bestehenden Sonderforschungsbereich "Molekulare Mechanismen unimolekularer Prozesse" zur Verfügung.

Der SFB 357 ist damit zum dritten Mal erfolgreich begutachtet worden und wird nun weitere drei Jahre gefördert. Universitäts-Präsident Prof. Dr. Horst Kern erklärte dazu: "Bewilligung und Fördervolumen sind ein erneuter Beleg für die Forschungsstärke unserer Hochschule. Wir können Wissenschaftler aufbieten, die in innovativen Bereichen exzellente Forschungsprojekte entwickeln und durchführen." Insgesamt fördert die DFG an der Universität Göttingen neun Sonderforschungsbereiche sowie 13 Graduiertenkollegs für den wissenschaftlichen Nachwuchs.

An dem neuen Sonderforschungsbereich 602 sind die Tieftemperaturphysik, die Kern- und Atomphysik, die Halbleiterphysik und die Theoretische Physik, das Institut für Physikalische Chemie und das Institut für Materialphysik beteiligt. In 21 Teilprojekten sollen die Wechselwirkungen benachbarter Atome und Moleküle in zukunftsweisenden Materialien untersucht werden. SFB-Sprecher Prof. Dr. Reiner Kirchheim (Institut für Materialphysik): "In den einfachsten Fällen ordnen sich die Bausteine der Materie diszipliniert auf den Plätzen eines räumlichen Gitters ein. Es hat sich jedoch gezeigt, daß gerade Abweichungen von der Idealstruktur an der Oberfläche und eine Reihe weiterer Gitterdefekte die Eigenschaften der Materie wesentlich mitbestimmen oder sogar beherrschen." Die Strukturen, mit denen sich die Wissenschaftler hier befassen, sind komplex und erstrecken sich räumlich von atomaren (ein Milliardstel Meter) bis zu mesoskopischen (ein Millionstel Meter) Abmessungen.

Mit Blick auf die praktische Anwendung ist die Grundlagenforschung am SFB 602 zum Beispiel für die Entwicklung von Speicherzellen und Datenträgern in der Informationstechnologie von Bedeutung. Wie Prof. Kirchheim erläutert, geht es dabei um die gezielte Herstellung dünner Filme aus unterschiedlichen Materialien, wobei durch die Reaktion benachbarter Materialien - etwa Metalle und Oxide - neue, komplexe Strukturen entstehen können. Für die Forschungsarbeiten steht ein modernes Instrumentarium von Untersuchungsmethoden zur Verfügung, so beispielsweise eine sogenannte tomographische Atomsonde, die nach Angaben von Prof. Kirchheim weltweit in nur sechs Laboratorien eingesetzt wird.

Im SFB 357 "Molekulare Mechanismen unimolekularer Prozesse" arbeiten Wissenschaftler des Instituts für Physikalische Chemie und des Instituts für Organische Chemie sowie der beiden Max-Planck-Institute für biophysikalische Chemie und für Strömungsforschung an Fragen der Reaktionskinetik und Reaktionsdynamik. In 14 Teilprojekten werden die molekularen Ursachen chemischer Prozesse und die daraus resultierenden Geschwindigkeiten experimentell untersucht und theoretisch bearbeitet. "Als unimolekular werden solche chemische Reaktionen bezeichnet, bei denen sich ein molekularer Zerfall oder eine atomare Umlagerung vom übrigen molekularen Geschehen abgrenzen lassen. Da es sich hier um bestimmende Elementarschritte im Verlauf sehr komplexer chemischer Reaktionen handelt, sind die unimolekularen Prozesse von grundsätzlichem Forschungsinteresse, aber auch von großer praktischer Bedeutung, etwa bei der Verbrennung in Motoren oder der Chemie der Atmosphäre", so SFB Sprecher Prof. Dr. Jürgen Troe vom Institut für Physikalische Chemie.

Der Wissenschaftler zeigte sich erfreut über die erneut erfolgreiche Begutachtung des Sonderforschungsbereichs, der damit die maximale Förderdauer von in der Regel zwölf Jahren erreichen wird. Prof. Troe: "In ihrem äußerst positiven Votum heben die Gutachter die besondere wissenschaftliche Qualität mit zum Teil exzellenten Einzelbenotungen, die sehr hohe internationale Präsenz des SFB, die guten neuen Forschungsansätze und die gelungene Einbindung junger Wissenschaftlerkollegen in verantwortliche Positionen hervor."

Marietta Fuhrmann-Koch | idw

Weitere Berichte zu: DFG Materie Physikalisch

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Krankheitserreger im Visier
09.10.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Wie überleben Nervenzellen? Forschungsteam versucht den Zelltod zu stoppen
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics