Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser: Lebenselixier mit vielen unbekannten Eigenschaften

26.11.2001


Die noch unbekannten Eigenschaften des Wassers an Grenzflächen wird die neue DFG-Forschergruppe "Polymorphismus, Dynamik und Funktion von Wasser an molekularen Grenzflächen" an den Universitäten Dortmund, Bochum und Darmstadt unter die Lupe nehmen. Sie untersucht den Einfluss molekular strukturierter Grenzflächen, wie etwa großer Biomoleküle, auf die Struktur und Dynamik des Wassers und erforscht, welche Rückwirkungen sich aus seinen veränderten Eigenschaften z. B. auf biologische Systeme ergeben.

Beteiligt sind Forscher des Fachbereichs für Chemie der Universität Dortmund (Prof. Dr. Roland Winter, Prof. Dr. Alfons Geiger, PD Dr. Ralf Ludwig), der Fakultät für Chemie der Ruhr-Universität Bochum (Prof. Dr. Dominik Marx, Prof. Dr. Hermann Weingärtner) und der Experimentalphysik der Universität Darmstadt (Prof. Franz Fujara, Dr. Burkhard Geil). Ein Kollege aus dem Fachbereich Physik in Dortmund wird demnächst noch hinzukommen (Prof. Dr. Mertin Tolan). Sprecher bzw. stellvertretender Sprecher sind Prof. Winter und Prof. Weingärtner.

Wesentliche Eigenschaften sind noch unerforscht

Wasser ist unser Lebenselixier. Jeder kennt es, ob fest, flüssig oder gasförmig, und jeder trinkt es, kocht, spült und wäscht damit, schwimmt darin. Es bestimmt als Reaktionsmedium mit seinen speziellen und einzigartigen Eigenschaften alle biochemischen und physiologischen Vorgänge. Bis heute ist jedoch seine Rolle für die Struktur und Dynamik biomolekularer Systeme weitgehend unverstanden. Besonders über die Eigenschaften und die Funktion von Wasser an Grenzflächen, wie großen Biomolekülen (z.B. Protein-, Membranoberflächen), ist noch wenig bekannt. Die Forschergruppe nähert sich diesen Fragen mit experimentellen und theoretischen Methoden gleichermaßen an.

Wenig Platz - anderes Verhalten

Die Forscher beschäftigen sich mit dem Verhalten des Wassers in seiner zentralen Rolle für die Struktur, Dynamik und Funktion hydratisierter Biomoleküle. Sie studieren z. B. Wassermoleküle in Poren und Kanälen von Zellen. Dort haben sie nur wenig Platz und zeigen deshalb unterschiedlich starke Wechselwirkungen mit den Wänden. Die Struktur und Dynamik des Wasser ist daher dort anders, als man sie von der Flüssigkeit her kennt. Auch auf festen Oberflächen und inneren Grenzflächen mit unterschiedlicher chemischer und topologischer Beschaffenheit beobachten die Forscher das Wasser. Die Wechselwirkung zwischen Wasser und Grenzflächen hängt vor allem davon ab, wie glatt oder rau eine Oberfläche auf molekularer Skala ist. Manchmal können sie sogar chemisch miteinander reagieren.

Theorie und Experiment

Die Wissenschaftler bedienen sich der optischen Mikroskopie - für Strukturen, die bis zu einem zehntausendstel Millimeter klein sind -, der Rastersondenmikroskopie sowie der Röntgen- und Neutronenbeugung, die sogar die Bestimmung von Strukturen im Nanobereich bis hinunter zur Größe eines Atoms erlauben. Langsame Bewegungen studieren sie mit speziellen Methoden der Kernspinresonanz (NMR), die schnelle Dynamik mit Hilfe der Infrarot- und Ramanspektroskopie oder der Neutronenstreuung. Neben den Experimenten erlauben ihnen theoretische Simulationsmethoden die Untersuchung von Systemen mit bis zu einhunderttausend Teilchen im "virtuellen Labor". Die enge Verknüpfung von Theorie und Experiment ist Voraussetzung für das Gelingen der Forschungsvorhaben. Die Wissenschaftler pflegen weiterhin einen intensiven Austausch mit Kollegen in der ganzen Welt. Besonders eng sind die Kontakte mit ausländischen Arbeitsgruppen, die an derselben Thematik arbeiten und von eigenen nationalen Förderprogrammen unterstützt werden. Zu den Kooperationspartnern gehört auch Prof. H.E. Stanley von der Boston University, dem vor kurzem die Ehrendoktorwürde der Universität Dortmund verliehen wurde.

Materialwissenschaft profitiert auch

Die Themen der Forschergruppe tragen besonders zum molekularen Verständnis biologischer Prozesse und der biologisch-chemischen Mikrostrukturtechnik bei. Aber auch die Materialwissenschaft profitiert davon. Interessant sind hier z. B. Untersuchungen des Alterungsprozesses von Polymeren oder die Herstellung wasserabweisender Oberflächenstrukturen. Thematisch ist das Projekt zunächst für einen Zeitraum von 6 Jahren angelegt. Dabei beläuft sich das Budget allein für die ersten drei Jahre auf etwa 3 Mio. DM.

Infos:
Prof. Dr. Roland Winter, Physikalische Chemie I, Fachbereich Chemie, Universität Dortmund , Tel. 0231/755-3900, E-Mail: winter@steak.chemie.uni-dortmund.de
Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-26485, 
E-Mail: dominik.marx@theochem.ruhr-uni-bochum.dearrieren

Klaus Commer | idw

Weitere Berichte zu: Biomolekül Dynamik Grenzfläche Lebenselixier

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Damit auch kleine Unternehmen von der Digitalisierung profitieren
16.08.2018 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

nachricht Verformung mit Fingerspitzengefühl
13.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics