Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genetischer Fingerabdruck entlarvt mikrobielle Täter auf beschädigtem Papier

16.01.2006


Erstmals können nun mittels modernster DNA-Analyse auch Papier zersetzende Mikroorganismen identifiziert werden. Möglich wird dies durch ein molekulares Verfahren, das mit Unterstützung des Wissenschaftsfonds FWF an der Universität Wien für pilzbefallene Dokumente entwickelt wurde. Dabei lassen sich anhand des als ITS1 bezeichneten DNA-Abschnitts Pilzarten eindeutig bestimmen und künftig gezielt Maßnahmen zum Erhalt historischer Dokumente setzen.


Der Zahn der Zeit, der an historisch wertvollen Schriftstücken nagt, lässt sich im Allgemeinen leicht benennen: Mikroorganismen wie etwa Pilze setzen sich bei günstigen Bedingungen fest und zersetzen langsam das Dokument. Gilt es diese Pilze genau zu identifizieren, sind herkömmliche Methoden jedoch aufwändig und ungenau. Diese benötigen eine relativ große Menge an Probenmaterial sowie die Vermehrung und anschließende mikroskopische Bestimmung der Pilzprobe: ein insgesamt langwieriger und damit fehleranfälliger Prozess. Ein Team um Dr. Guadalupe Pinar am Department für Medizinische und Pharmazeutische Chemie, Universität Wien, entwickelte nun ein Verfahren, mit dem sich Pilzarten anhand ihrer DNA schnell und eindeutig klassifizieren lassen.

Multiple Mutationen


Dabei macht sich Dr. Pinar eine Besonderheit im Erbgut vieler Pilzarten zu Nutze: Ein als ITS1 bezeichneter DNA-Abschnitt weist von Art zu Art enorme Unterschiede in der Sequenz der DNA-Basenpaare auf. Zum Ursprung dieser Unterscheidungsmerkmale erläutert Dr. Pinar: "Der ITS1-Abschnitt unterliegt häufig spontanen Mutationen. Da dieser DNA-Abschnitt jedoch keine erkennbare Funktion im Pilzgenom aufweist und nicht unmittelbar zur Überlebensfähigkeit einer Pilzart beiträgt, sind diese Spontanmutationen nicht weiter nachteilig. Jede Pilz-Art hat damit allerdings ihren typischen ITS1-Abschnitt und somit eine ganz individuelle Kennung."

Damit diese Sequenzunterschiede analysiert werden können, werden aber - für molekularbiologische Verhältnisse - große Mengen an DNA benötigt. Die kann man zwar dadurch gewinnen, dass große Mengen des Ausgangsmaterials verwendet werden - bei historischen Dokumenten verbietet sich diese Möglichkeit jedoch.

Dem ForscherInnen-Team gelang es nun mittels modernster Methoden, die benötigte DNA in ausreichenden Mengen herzustellen. Dazu erläutert die Diplom-Biologin Astrid Michaelsen, Teampartnerin von Dr. Pinar: "Wir verwenden die Polymerase Chain-Reaktion, ein hoch effizientes Verfahren, um einzelne DNA-Abschnitte zu vervielfältigen. So können wir ITS1-Fragmente in großer Menge und in hoher Reinheit herstellen, selbst wenn wir nur sehr kleine Mengen an Pilzmaterial für die DNA-Extraktion zur Verfügung haben. Das erlaubt die bereits in Mitleidenschaft gezogenen Dokumente größtmöglich zu schonen."

Spannende Ergebnisse

Werden genügend ITS1-Fragmente erzeugt, kann die eigentliche DNA-Analyse erfolgen: Bei der als Denaturing Gradient Gel Electrophoresis bezeichneten Analyse werden die ITS1-Fragmente in ein unter elektrischer Spannung stehendes Gel gegeben. Je nach Mutationen legen die ITS1-Proben in diesem Spannungsfeld unterschiedlich weite Wegstrecken zurück, die für jede Pilzart charakteristisch sind. Schon ein Austausch von einem Basenpaar resultiert in Unterschieden, die ein exaktes Bestimmen der Pilzart zulassen.

Die nun entwickelte Methode bietet tatsächlich noch einen weiteren Vorteil gegenüber traditionellen Methoden: Selbst nicht mehr lebensfähige Pilze können als Ausgangsmaterial dienen. Dazu Dipl.-Biol. Michaelsen: "Gerade auf Papier ist zu beobachten, dass Pilze nach etwa 20 Jahren nicht mehr aktiv sind. Die DNA, das Ausgangsmaterial für unsere Methode, kann aber auch aus solchem Material isoliert werden. Es können also mit unserer Methode auch Dokumentenproben untersucht werden, auf denen der Pilz zwar inaktiv ist, aber der Zersetzungsprozess sich trotzdem fortsetzt. Traditionelle Methoden scheitern hier, da sie auf die Vermehrung lebensfähiger Pilze angewiesen sind."

Die Ergebnisse dieses vom Wissenschaftsfonds FWF unterstützten Projekts erlauben es nun, je nach Pilzart individuell geeignete Restaurierungs- und Pflegemaßnahmen in Zusammenarbeit mit dem "Istituto Centrale per la Patologia del Libro" in Rom zu entwickeln, das auch die historischen Proben zur Verfügung stellt. So kann der Erhalt wichtiger Kulturgüter für zukünftige Generationen optimal gesichert werden.

Wissenschaftlicher Kontakt:
Dipl.-Biol. Astrid Michaelsen
Universität Wien
Dept. for Medicinal Chemistry
Althanstraße 14
A-1090 Wien
T +43 / 4277 / 55116
E astrid.michaelsen@univie.ac.at

Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt Weyringergasse 35
A-1040 Wien
T +43 / 1 / 505 67 40 - 36
E bernhardt@fwf.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Mag. Daniel Kainz | PR&D
Weitere Informationen:
http://www.univie.ac.at
http://www.fwf.ac.at

Weitere Berichte zu: Ausgangsmaterial DNA FWF ITS1-Fragment Pilzart Wissenschaftsfond

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Nicht so stabil wie gedacht: UDE-Forscher testen gängiges Flammschutzmittel
10.01.2019 | Universität Duisburg-Essen

nachricht Wie Hirnregionen einander zuhören
02.01.2019 | Universität zu Lübeck

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Im Focus: Licht von der Rolle – hybride OLED ermöglicht innovative funktionale Lichtoberflächen

Bislang wurden OLEDS ausschließlich als neue Beleuchtungstechnologie für den Einsatz in Leuchten und Lampen verwendet. Dabei bietet die organische Technologie viel mehr: Als Lichtoberfläche, die sich mit den unterschiedlichsten Materialien kombinieren lässt, kann sie Funktionalität und Design unzähliger Produkte verändern und revolutionieren. Beispielhaft für die vielen Anwendungsmöglichkeiten präsentiert das Fraunhofer FEP gemeinsam mit der EMDE development of light GmbH im Rahmen des EU-Projektes PI-SCALE auf der Münchner LOPEC (19. bis 21. März 2019), erstmals in Textildesign integrierte hybride OLEDs.

Als Anbieter von Forschungs- und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik setzt sich das Fraunhofer FEP schon lange mit der...

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Laserverfahren für funktionsintegrierte Composites

Composites vereinen gewinnbringend die Vorteile artungleicher Materialien – und schöpfen damit zum Beispiel Potentiale im Leichtbau aus. Auf der JEC World 2019 im März in Paris präsentieren die Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein breites Spektrum an laserbasierten Technologien für die effiziente Herstellung und Bearbeitung von Verbundmaterialien. Einblicke zu Füge- und Trennverfahren sowie zur Oberflächenstrukturierung erhalten Besucher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL, Halle 5A/D17.

Experten des Fraunhofer ILT erforschen und entwickeln Laserprozesse für das wirtschaftliche Fügen, Schneiden, Abtragen oder Bohren von Verbundmaterialien –...

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LastMileLogistics Conference in Frankfurt befasst sich mit Lieferkonzepten für Ballungsräume

19.02.2019 | Veranstaltungen

Bildung digital und multikulturell: Große Fachtagung GEBF findet an der Uni Köln statt

18.02.2019 | Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wasser ist homogener als gedacht

20.02.2019 | Biowissenschaften Chemie

Von mobilen Reinräumen und personalisierten Strandschuhen

20.02.2019 | HANNOVER MESSE

Smart Building: Weniger Energieverbrauch, mehr Komfort

20.02.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics