Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augsburger HPSC-Projekte auf den Supercomputern des LRZ München

28.08.2000


... mehr zu:
»LRZ »Physik
Mit neun von insgesamt 108 HPSC-Projekten, die in den Jahren 1997 bis 1999 auf den Höchstleistungsrechnern des Leibniz Rechenzentrums München (LRZ) bearbeitet wurden, weist die Universität Augsburg unter
Berücksichtigung ihrer Größe und ihres spezifischen Fächerspektrums einen überraschend hohen Zugriff auf die dortigen HPSC-Kapazitäten aus.

HPSC steht für "High Performance Scientific Computing" und meint das Wissenschaftliche Rechnen auf Höchstleistungscomputern. Es umfasst die mathematische Modellierung und die numerische Simulation von z. B. technisch-wissenschaftlichen oder ökonomischen Prozessen sowie die Bestimmung der Aussagekraft des Modells und die Überprüfung und Bestätigung der Rechenergebnisse. Die enorme Entwicklung auf dem Gebiet der elektronischen Rechenanlagen in Hinblick auf Rechenzeit und Speicherkapazität ermöglicht die Behandlung äußerst komplexer Problemstellungen. Andererseits erfordern spezielle Rechnerkonfigurationen, insbesondere Parallelrechner, die Entwicklung und Anwendung effizienter numerischer Rechenverfahren, die auf die Besonderheiten der Rechnerarchitektur abgestimmt sind. In diesem Spannungsfeld bewegt sich das High Performance Scientific Computing.

Zum Beispiel ist es das Ziel der Theoretischen Physik, die Grundlagen der Natur mit Hilfe vereinfachender Modelle unter Anwendung mathematischer Methoden zu erklären. So können z. B wesentliche Eigenschaften eines Festkörpers (wie seine elektrische Leitfähigkeit und sein magnetisches Verhalten) häufig schon in rein elektronischen Modellen - wie etwa im sogenannten Hubbard-Modell - verstanden werden. Deren grundlegende Eigenschaften lassen sich zwar zum Teil bereits analytisch berechnen bzw. abschätzen, wenn es aber darum geht, sie genauer zu untersuchen erfordern selbst derart vereinfachende Modelle den intensiven Einsatz von schnellen Rechnern.

Unter Rückgriff auf entsprechende Höchstleistungsrechner konnte Prof. Dr. Dieter Vollhardt, Inhaber des Augsburger Lehrstuhls für Theoretische Physik III, in Form der von ihm eingeführten und international permanent weiterentwickelten "Dynamischen Molekularfeld-Theorie" einen völlig neuen Zugang zum Hubbard-Modell eröffnen. Mit Hilfe sogenannter Quanten-Monte-Carlo-Simulationen (bei denen komplizierte Integrale gewissermaßen ausgewürfelt werden) und durch den Einsatz paralleler Algorithmen ist es Vollhardt und seiner Arbeitsgruppe dabei u. a. gelungen, magnetische Eigenschaften von Materialien zu klären, die für Leseköpfe von Festplatten von Interesse sind.

Bei diesen Arbeiten greift das Vollhardt-Team nicht nur auf den IBM-Unix-Arbeitsplatzrechner-Verbund des Augsburger Physik-Instituts und den IBM-Großrechner des Rechenzentrums der Universität Augsburg zurück, vielmehr stehen dem Lehrstuhl für Simulationsrechnungen auch die Cray-Supercomputer des Forschungszentrums Jülich sowie insbesondere die Höchstleistungsrechner Cray T90 und Fujitsu-Siemens VPP 700 des LRZ München zur Verfügung.

Neben dem Lehrstuhl Vollhardt (mit den beiden HPSC-Projekten "Metal-Isolator Transition in the Infinite-Dimensional Hubbard Model" und "Magnetism in Transition Metals and Their Oxides") arbeiteten Augsburger Physiker und Mathematiker von 1997 bis 1999 mit folgenden Forschungsvorhaben auf den Höchstleistungsrechnern des Leibniz-Rechenzentrums:
* Efficient Parallel Domain Decomposition Methods for Fluidmechanical Problems on Nonmatching Grids (Lehrstuhl Prof. Dr. Ronald H. W. Hoppe, Institut für Mathematik, in Zusammenarbeit mit Kollegen aus Wien, Houston und Moskau)
* Parallel Molecular Dynamics Simulations of Deposition Processes (Lehrstühle Prof. Dr. Ronald H. W. Hoppe, Institut für Mathematik, und Prof. Dr. Bernd Stritzker, Institut für Physik)
* Stochastic Simulation of Granular Surface Flow in Rotated Drums (Lehrstuhl Prof. Dr. Peter Hänggi, Institut für Physik)
* A Real-Time Path Integral Method for driven Dissipative Quantum Systems (Lehrstuhl Prof. Dr. Peter Hänggi, Institut für Physik)
* Interacted Electrons in Disordered Systems (Drs. P. Schmittecker, und A. Wobst, Institut für Physik, in Zusammenarbeit mit Dr. D. Weinmann, Straßburg)
* Periodic and Random Distortions in One-Dimensional Fermi and Spin Systems (Drs. C. Schuster und P. Schmittecker, Institut für Physik).

Mit dem Finanz- und Bankwissenschaftler Dr. W. Kispert und seinem Projekt "Implicit Distributions in Stock Markets. Estimation with a Maximum Entropy Procedure" war auch die Wirtschafts- und Sozialwissenschaftliche Fakultät der Universität Augsburg unter den Nutzern des Leibniz Rechenzentrums vertreten.

KONTAKT UND WEITERE INFORMATIONEN:

* Prof. Dr. Ronald H. W. Hoppe
Lehrstuhl für Angewandte Analysis mit Schwerpunkt Numerik
Universität Augsburg, D-86135 Augsburg
Telefon: 0821/598-2194, Telefax: 0821/598-2339, e-mail:
hoppe@math.uni-augsburg.de

* Prof. Dr. Dieter Vollhardt
Lehrstuhl für Theoretische Physik III/Elektronische Korrelationen und Magnetismus
Universität Augsburg, D-86135 Augsburg
Telefon: 0821/598-3700, Telefax: 0821/598-3725, e-mail:
vollha@physik.uni-augsburg.de

Klaus P. Prem |

Weitere Berichte zu: LRZ Physik

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Mit Hightech-Analytik besser erkennen, ob der Krebs zurückkehrt
11.02.2020 | Deutsches Krebsforschungszentrum

nachricht Dem Blick folgen – Die Handprothese verbessern
11.02.2020 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics