Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selektives Lasersintern von Keramik

20.09.2000


Verfahrensablauf bei der

Porzellanherstellung durch Lasersintern


Wechselwirkungen Laserstrahl -

Porzellanpulver


Die Professur für Ingenieurkeramik des Institutes für Nichtmetallische Werkstoffe der TU Clausthal präsentiert auf der internationalen Fachmesse Ceramitec vom 17. bis 21. Oktober 2000 in
München Ergebnisse aktueller Forschungsvorhaben zum selektiven Lasersintern von Keramik.

Die Professur für Ingenieurkeramik (Prof. Dr.-Ing. Jürgen G. Heinrich) des Institutes für Nichtmetallische Werkstoffe der TU Clausthal präsentiert auf der internationalen Fachmesse Ceramitec vom 17. bis 21. Oktober 2000 in München Ergebnisse aktueller Forschungsvorhaben zum selektiven Lasersintern von Keramik.

Die Herstellung keramischer Prototypen ist bislang mit viel Handarbeit verbunden und daher zeitaufwendig. Das neue Verfahren, gegenwärtig in der Entwicklungsphase befindlich, wird den Aufwand der Modell- und Formenherstellung drastisch verringern.

Für dieses Ziel werden zunächst mit dem 3D-CAD-System Unigraphics Modelle im Rechner erstellt, in Schichten geschnitten und als NC-Datensatz exportiert. Dafür finden Standard-Programm-Module Anwendung. In den Lasersinteranlagen werden diese Datensätze von einem eigens programmierten Post-Prozessor weiterverarbeitet und zum sukzessiven Aufbau von keramischen Prototypen verwendet.

Das angestrebte Verfahren hat mit den meisten Lösungsansätzen des Rapid Prototyping den schichtweisen Aufbau des Bauteils gemeinsam. Dazu wird das Pulver in einer Lage von wenigen Zehntelmillimetern Dicke auf einen Objekttisch aufgebracht. Anschließend wird die Schichtinformation des herzustellenden Bauteils mit dem Laser selektiv auf der Pulverschicht abgebildet. Der Tisch fährt um eine Schicht-dicke nach unten, eine weitere Pulverlage wird aufgetragen und der Laserprozess beginnt von neuem.

Nach Abbildung aller Schichten kann der Prototyp aus dem Prozessraum herausgenommen und gegebenenfalls weiteren Behandlungsschritten, dem finishing, unterzogen werden. Im Fall der Porzellanherstellung wird es sich dabei um eine Nachsinterung zur weiteren Verdichtung und Verfestigung des Scherbens sowie um die Glasierung des Bauteils handeln.

Im Rahmen der erwähnten Arbeiten sollen nicht nur technologische Aspekte, sondern auch die Wechselwirkungen von Laserstrahlung unterschiedlicher Wellenlänge mit verschiedenen keramischen Werkstoffen durch Parameterstudien untersucht werden. Um ein möglichst breites Anwendungsspektrum abzudecken, kommen dabei zwei unterschiedliche Sinteranlagen mit verschiedenen Lasern - CO2 und Nd:YAG - zur Anwendung.

Neben der bereits erwähnten Methode - Bauteilaufbau mit einem fahrbaren Objekttisch und lagenweise diskontinuierlicher Pulverzuführung - wird eine weitere Methode mit kontinuierlicher Pulverzuführung angewandt. Kernstück der Anlage ist ein Roboterarm, der in einem speziellen Kopf einen Lichtwellenleiter und eine pneumatische Pulverzuführung kombiniert. Durch diese Anordnung treffen Laserstrahl und keramisches Pulver in einer Düse aufeinander und die Wechselwirkungen finden statt, bevor das Material die Düse verlässt.

Im Vergleich zur Verwendung von Verfahreinheiten für das Pulverbett ist es mit dem wesentlich flexibler einsetzbaren Roboter möglich, Bewegungen des Laserstrahls nebst Pulverzuführung frei im Raum durchzuführen und somit kompliziert geformte monolithische keramische Bauteile herzustellen oder verschiedenste Bauteilgeometrien mit keramischem Material zu beschichten.

Im Gegensatz zu konventionellen Herstellungsverfahren werden beim Lasersintern die Aufheiz- und Abkühlvorgänge des Materials wesentlich beschleunigt. Die sich daraus ergebenden Unterschiede im Materialverhalten sind Gegenstand der laufenden Untersuchungen.

Die Ankopplung des Laserstrahls an die Materie vollzieht sich innerhalb einer Eindringtiefe bis annähernd zum doppelten seiner Wellenlänge und somit innerhalb eines Bruchteils der eigentlichen Schichtdicke. Alle weiteren das Pulver verfestigenden Prozesse werden demzufolge nur aufgrund von Wärmeleitprozessen innerhalb der Schüttung ausgelöst.

Beim schichtweisen Aufbau eines Bauteils mit Schichtdicken von teilweise unter 100 µm wird in der Regel eine hohe Relativgeschwindigkeit zwischen Laserstrahl und Materie gewählt, damit der Energieeintrag nicht zu hoch wird. Daraus ergeben sich Laser-Stoff-Wechselwirkungszeiten von wenigen µs. Diese Beziehungen werden im Rahmen einer Kooperation mit dem Physikalischen Institut eingehend untersucht. Dabei steht nicht die Wechselwirkung eines kompakten homogenen Werkstoffs mit Laserstrahlung, sondern vielmehr die Wechselwirkung einzelner Pulverpartikel bzw. einer losen Pulverschüttung mit dem Laserstrahl im Vordergrund. In der Kooperation der beiden Institute soll ein mesoskopisches Modell zur Beschreibung der Strahl-Pulver-Wechselwirkung entwickelt werden.


Weitere Informationen:
Prof. Dr.-Ing. Jürgen Heinrich
Institut für Nichtmetallische Werkstoffe
Tel. +49-(0)-5323-72 2354
Fax:+49-(0)-5323-72-3119
e-mail: heinrich@naw.tu-clausthal.de
Zehntnerstraße 2A
38678 Clausthal-Zellerfeld

Weitere Informationen finden Sie im WWW:

Jochen Brinkmann |

Weitere Berichte zu: Keramik Laser Laserstrahl Wechselwirkung

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?
14.06.2019 | Otto-von-Guericke-Universität Magdeburg

nachricht Erfolgreiche Forschung zur Ausbreitung von Wellen
23.05.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ursache von "Erschöpfungszustand" von Immunzellen gefunden

18.06.2019 | Biowissenschaften Chemie

Studie am Dresdner Uniklinikum: Schädel-Hirn-Trauma – bleibt´s beim kurzen Schrecken?

18.06.2019 | Studien Analysen

Kältefalle für Zellen und Organismen - Forschung an verbessertem Mikroskopieverfahren

18.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics