Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MFH-Professoren erhalten 380.000 DM für Forschung im Bereich Nanotechnologien

28.09.2000


Freuen sich über die finanzielle

Unterstützung ihrer Forschungsarbeiten (v.l.n.r.) Prof. Dr. Fobbe

und Prof. Dr. Meisterjahn


Umweltfreundliche Korrosionsschutzverfahren und innovative Beschichtungen für Glasscheiben werden entwickelt

Die Märkische Fachhochschule (MFH) entwickelt sich zu einem der Kompetenzzentren für Nanotechnologie in Deutschland. Nachdem das Wissenschaftsministerium bereits 1998 einen Forschungsschwerpunkt "Nanoskalierende Materialien" an der Hochschule eingerichtet hat, erhielten jetzt die Professoren Dr. Helmut Fobbe und Dr. Peter Meisterjahn vom Bundesministerium für Bildung und Forschung im Rahmen des Forschungsprogramms "Anwendungsorientierte Forschung und Entwicklung an Fachhochschulen insgesamt 380.000 DM für ihre Forschungsarbeiten auf dem Gebiet der Nanotechnologien bewilligt. Damit flossen bis jetzt über eine Millionen DM in diesen Forschungsschwerpunkt.

Die Nanotechnologie gilt als eine der bedeutsamsten und aussichtsreichsten Innovationsquellen für den industriellen und wirtschaftlichen Fortschritt und zählt damit zu den wichtigsten Zukunftstechnologien des 21. Jahrhunderts. Worum geht es bei dieser Technologie? Nanoskalierende Materialien werden vorzugsweise mittels des sogenannten chemischen Sol-Gel-Prozesses aus flüssigen Ausgangsstoffen hergestellt. Das Verfahren erschließt einen einfachen und preiswerten Zugang zu hochspezialisierten High-Tech-Werkstoffen und Oberflächenbeschichtungen. Mit Hilfe der Nanotechnologie können also Oberflächen von Werkstoffen aller Art funktionsgerecht veredelt werden. Kunststoffe werden dadurch kratzfest, Fenstergläser hitzebeständig, Oberflächen schmutzabweisend, Autoscheiben beschlagfrei, um nur einige Anwendungsbeispiele zu nennen.

Das Forschungsprojekt von Prof. Fobbe befasst sich mit der Entwicklung eines neuartigen, umweltfreundlichen Verfahrens zur Versiegelung metallischer Untergründe, anwendbar beispielsweise beim Korrosionsschutz metallischer Kleinteile im Automobilbau. Im Motorraum eines Kraftfahrzeuges treten Temperaturen von über 100 Grad Celsius bei extremer Feuchtigkeits- und Salzbelastung auf. Trotz dieser Extrembedingungen sollen Schrauben und Verbindungselemente auch nach langer Gebrauchsdauer keinen Rostbefall zeigen. Zurzeit wird dies in der industriellen Praxis mit Mehrfachbeschichtungen, den sogenannten Duplexsystemen erreicht, die zum Beispiel aus einer Kombination von galvanischer Verzinkung, dünnschichtiger Nachbehandlung und Lackierung bestehen. Die verwendeten Beschichtungsstoffe enthalten jedoch vielfach noch Schwermetalle, was in der Automobilindustrie zukünftig nicht mehr zulässig sein wird. Abhilfe verspricht nun ein neuartiges Verfahren zur Oberflächenbehandlung mittels chemischer Nanotechnologie. Im Rahmen der Projektarbeit entwickelt Prof. Fobbe eine praktikable, im industriellen Maßstab realisierbare umweltfreundliche Alternative auf wässriger Basis.

Um optisch transparente, elektrisch leitfähige Schichten geht es in dem Forschungsvorhaben von Prof. Meisterjahn. Ebenfalls basierend auf der chemischen Nanotechnologie soll der entsprechende Herstellungsprozess derartiger Schichten entwickelt werden. Optisch transparente, elektrisch leitfähige Schichten sind wegen ihrer vorteilhaften Eigenschaftskombination von besonderem Interesse für die glasverarbeitende Industrie. Die Anwendungsbereiche dieser Schichten erstrecken sich von beheizbaren Glasscheiben, über Display- und Antistatikanwendungen bis hin zu Wärmedämmung von Gebäuden durch entsprechend veredelte Fensterscheiben. Darüber hinaus eröffnen sie als transparente Elektroden den Zugang zu elektrochromen Schichtsystemen, die zur Steuerung der Lichtdurchlässigkeit und Abblendfähigkeit von Kraftfahrzeugverglasungen zum Beispiel der Fenster oder der Spiegel geeignet sind.

Der Forschungsschwerpunkt kann mit Hilfe der Fördergelder nun auch personell aufgestockt werden. Bereits seit April diesen Jahres wird im Rahmen des Assistentprogramms des Landes eine MFH-Absolventin beschäftigt, die in diesem Bereich promovieren möchte. Den beiden MFH- Professoren kommt es insbesondere darauf an, die Nanotechnologie auch in die Ausbildung der Studierenden zu integrieren, um der Industrie auch die entsprechend ausgebildeten Mitarbeiterinnen und Mitarbeiter für den Einsatz dieser Zukunftstechnologie zur Verfügung zu stellen. Bislang wird dies von den wenigsten Hochschulen angeboten.

Dipl.-Soz.Wiss. Birgit Geile-Hänßel | idw

Weitere Berichte zu: Glasscheiben Nanoskalierende Nanotechnologie Schicht

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Hightech für Natur
03.04.2020 | Museum für Naturkunde - Leibniz-Institut für Evolutions- und Biodiversitätsforschung

nachricht Biobasierte Leichtbau-Sandwich-Strukturen für Rotorblätter
02.04.2020 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics