Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Roboter laufen lernen

27.10.2015

Federn statt Muskeln: Roboter "ATRIAS" geht wie ein Mensch

Roboter sollen dem Menschen immer ähnlicher werden. Doch gerade das Laufen auf zwei Beinen – eines der charakteristischsten Merkmale des Menschen – bereitet den Maschinen noch Probleme.


Illustration des Roboters "ATRIAS". (Bild: Mikhail Jones)

Dr. Daniel Renjewski von der TU München hat gemeinsam mit seinen Kollegen an der Oregon State University "ATRIAS" entwickelt, ein Prototyp, der das Laufen auf zwei Beinen so gut beherrscht wie bisher noch kein Roboter. Die Ergebnisse der Studie könnten auch für die Entwicklung von besseren Prothesen eingesetzt werden.

Wenn wir laufen, achten wir nicht bewusst auf die Struktur des Bodens. Unser Körper hat die Fähigkeit, kleine Unebenheiten automatisch auszugleichen, ohne dass wir stolpern oder stehen bleiben müssen. Laufroboter wie etwa der humanoide "Asimo" aus Japan, die dem Menschen vom Aussehen sehr ähneln, gehen im Vergleich dazu allerdings eher langsam und steif. Auch verbrauchen sie für den Vorgang sehr viel Energie.

Menschen und Tiere denken nicht über das Laufen nach, erklärt Dr. Daniel Renjewski vom Lehrstuhl für Echtzeitsysteme und Robotik an der TUM. "Die Intelligenz liegt in der Mechanik." Sehnen und Muskeln federn die Unebenheiten des Untergrunds ab. "Wenn wir laufen, fallen wir sozusagen von einem Schritt in den anderen", sagt Renjewski. Das bedeutet, unser Gang ist zeitweise instabil. Würde das Laufen mitten in der Bewegung unterbrochen, wäre die Folge, dass wir hinfallen. 

Bisherige Laufroboter: Stabil, aber steif

Eine solche dynamische Bewegung ist bei einem Roboter, der nach klassischen technischen Prinzipien entwickelt wurde, schwer zu steuern. Um kontrollieren zu können, dass die Maschine stets stabil ist und nicht umfällt, messen die Ingenieure daher zu jedem Zeitpunkt, wo sich der Roboter befindet und wie sein Schwerpunkt verlagert wird. Ein Preis für diese genaue Steuerung: Die Bewegungen müssen kontrolliert und steif sein. Meist laufen die Maschinen im Labor auf geradem Terrain und müssen nur definierten Hindernissen ausweichen.

Renjewski und seine Kollegen an der Oregon State University hatten das Ziel einen Roboter zu entwickeln, dessen Gangart dem des Menschen gleicht. Den zweibeinigen Roboter, über den sie im Fachblatt "IEEE Transactions on Robotics" berichten, nannten sie "ATRIAS" (Assume The Robot Is A Sphere, übersetzt: Angenommen, der Roboter ist eine Kugel).

Feder-Masse-Modell in Theorie und Praxis

Die Entwicklung von ATRIAS basiert auf dem sogenannten Feder-Masse-Modell, das 1989 erstmals vorgestellt wurde. Dieses Modell beschreibt das grundlegende Prinzip des Laufens auf zwei Beinen. Die gesamte Masse des Körpers ist dabei in einem Punkt gebündelt, der mit einer masselosen Feder verbunden ist. Die Feder steht dabei vereinfacht für die Muskeln, Knochen und Sehnen, auf die in der Realität die Kräfte beim Gehen wirken.

Um dieses theoretische Modell technisch umsetzen zu können, mussten die Forscher noch einige Anpassungen vornehmen. Denn in der Realität besitzt die Feder eine Masse. Auch wird die mechanische Energie im System im Gegensatz zur Theorie durch Reibung teilweise in Wärme umgewandelt und steht nicht mehr für die Bewegung des Systems zur Verfügung. 

ATRIAS kann nicht aus der Ruhe bringen

Diese theoretisch fehlende mechanische Energie wird im Roboter durch Motoren zur Verfügung gestellt. ATRIAS besitzt je drei Motoren pro Bein. Zwei der Motoren wirken direkt auf die beiden Beinfedern ein. Der dritte Motor sorgt für die seitliche Stabilität des Roboters. Die Beine von ATRIAS machen nur zehn Prozent seiner Gesamtmasse aus, um so nahe wie möglich an die theoretische Masselosigkeit heranzureichen. 

Versuche zeigten, dass ATRIAS dreimal so effizient läuft wie andere menschengroße zweibeinige Roboter. Auch Krafteinwirkungen von außen wie ein Stoß durch einen Ball oder holperiger Boden kann ihn nicht aus der Balance bringen. Prof. Jonathan Hurst von der Oregon State University und Initiator der Studie, ist sich sicher, dass diese Art der Fortbewegung sich in Zukunft bei den Laufrobotern durchsetzen wird. Wenn die Technologie weiter verbessert wird, könnten Roboter seiner Einschätzung nach zum Beispiel als Helfer bei der Feuerwehr eingesetzt werden.

Entwicklung besserer Prothesen

Die Forschungsergebnisse sind aber auch für Menschen von Bedeutung. Renjewski, der zum Mai diesen Jahres an die TUM wechselte, beschäftigt sich in einem nächsten Schritt mit der Übertragung der gewonnenen Erkenntnisse auf Roboter zur Gangrehabilitation und Prothesen.

Originalpublikation: Daniel Renjewski, Alexander Sprowitz, Andrew Peekema, Mikhail Jones, Jonathan Hurst: "Exciting Engineered Passive Dynamics in a Bipedal Robot", IEEE Transactions on Robotics, Volume 31, Issue 5;
DOI: 10.1109/TRO.2015.2473456

Die Arbeit wurde gefördert von der National Science Foundation, der Defense Advanced Research Projects Agency und dem Human Frontier Science Program.

Kontakt

Dr. Daniel Renjewski
Technische Universität München
Lehrstuhl für Echtzeitsysteme und Robotik (Prof. Alois Knoll)
+49 (0)89 289 18133
daniel.renjewski@tum.de

Prof. Jonathan Hurst
Oregon State University
Associate Professor of Mechanical Engineering
+1-541-737-7010
jonathan.hurst@oregonstate.edu

Weitere Informationen:

https://flic.kr/p/s6hFdj Foto zum Download (Flickr)
https://www.youtube.com/watch?v=dl7KUUVHC-M Video auf Youtube
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32711/ Meldung auf der TUM-Webseite

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32711/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenschutz: Vom Stressfaktor zum Kinderspiel
19.03.2019 | Telekom/DataGuard

nachricht Der virtuelle Graue Star
18.03.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics