Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Roboter laufen lernen

27.10.2015

Federn statt Muskeln: Roboter "ATRIAS" geht wie ein Mensch

Roboter sollen dem Menschen immer ähnlicher werden. Doch gerade das Laufen auf zwei Beinen – eines der charakteristischsten Merkmale des Menschen – bereitet den Maschinen noch Probleme.


Illustration des Roboters "ATRIAS". (Bild: Mikhail Jones)

Dr. Daniel Renjewski von der TU München hat gemeinsam mit seinen Kollegen an der Oregon State University "ATRIAS" entwickelt, ein Prototyp, der das Laufen auf zwei Beinen so gut beherrscht wie bisher noch kein Roboter. Die Ergebnisse der Studie könnten auch für die Entwicklung von besseren Prothesen eingesetzt werden.

Wenn wir laufen, achten wir nicht bewusst auf die Struktur des Bodens. Unser Körper hat die Fähigkeit, kleine Unebenheiten automatisch auszugleichen, ohne dass wir stolpern oder stehen bleiben müssen. Laufroboter wie etwa der humanoide "Asimo" aus Japan, die dem Menschen vom Aussehen sehr ähneln, gehen im Vergleich dazu allerdings eher langsam und steif. Auch verbrauchen sie für den Vorgang sehr viel Energie.

Menschen und Tiere denken nicht über das Laufen nach, erklärt Dr. Daniel Renjewski vom Lehrstuhl für Echtzeitsysteme und Robotik an der TUM. "Die Intelligenz liegt in der Mechanik." Sehnen und Muskeln federn die Unebenheiten des Untergrunds ab. "Wenn wir laufen, fallen wir sozusagen von einem Schritt in den anderen", sagt Renjewski. Das bedeutet, unser Gang ist zeitweise instabil. Würde das Laufen mitten in der Bewegung unterbrochen, wäre die Folge, dass wir hinfallen. 

Bisherige Laufroboter: Stabil, aber steif

Eine solche dynamische Bewegung ist bei einem Roboter, der nach klassischen technischen Prinzipien entwickelt wurde, schwer zu steuern. Um kontrollieren zu können, dass die Maschine stets stabil ist und nicht umfällt, messen die Ingenieure daher zu jedem Zeitpunkt, wo sich der Roboter befindet und wie sein Schwerpunkt verlagert wird. Ein Preis für diese genaue Steuerung: Die Bewegungen müssen kontrolliert und steif sein. Meist laufen die Maschinen im Labor auf geradem Terrain und müssen nur definierten Hindernissen ausweichen.

Renjewski und seine Kollegen an der Oregon State University hatten das Ziel einen Roboter zu entwickeln, dessen Gangart dem des Menschen gleicht. Den zweibeinigen Roboter, über den sie im Fachblatt "IEEE Transactions on Robotics" berichten, nannten sie "ATRIAS" (Assume The Robot Is A Sphere, übersetzt: Angenommen, der Roboter ist eine Kugel).

Feder-Masse-Modell in Theorie und Praxis

Die Entwicklung von ATRIAS basiert auf dem sogenannten Feder-Masse-Modell, das 1989 erstmals vorgestellt wurde. Dieses Modell beschreibt das grundlegende Prinzip des Laufens auf zwei Beinen. Die gesamte Masse des Körpers ist dabei in einem Punkt gebündelt, der mit einer masselosen Feder verbunden ist. Die Feder steht dabei vereinfacht für die Muskeln, Knochen und Sehnen, auf die in der Realität die Kräfte beim Gehen wirken.

Um dieses theoretische Modell technisch umsetzen zu können, mussten die Forscher noch einige Anpassungen vornehmen. Denn in der Realität besitzt die Feder eine Masse. Auch wird die mechanische Energie im System im Gegensatz zur Theorie durch Reibung teilweise in Wärme umgewandelt und steht nicht mehr für die Bewegung des Systems zur Verfügung. 

ATRIAS kann nicht aus der Ruhe bringen

Diese theoretisch fehlende mechanische Energie wird im Roboter durch Motoren zur Verfügung gestellt. ATRIAS besitzt je drei Motoren pro Bein. Zwei der Motoren wirken direkt auf die beiden Beinfedern ein. Der dritte Motor sorgt für die seitliche Stabilität des Roboters. Die Beine von ATRIAS machen nur zehn Prozent seiner Gesamtmasse aus, um so nahe wie möglich an die theoretische Masselosigkeit heranzureichen. 

Versuche zeigten, dass ATRIAS dreimal so effizient läuft wie andere menschengroße zweibeinige Roboter. Auch Krafteinwirkungen von außen wie ein Stoß durch einen Ball oder holperiger Boden kann ihn nicht aus der Balance bringen. Prof. Jonathan Hurst von der Oregon State University und Initiator der Studie, ist sich sicher, dass diese Art der Fortbewegung sich in Zukunft bei den Laufrobotern durchsetzen wird. Wenn die Technologie weiter verbessert wird, könnten Roboter seiner Einschätzung nach zum Beispiel als Helfer bei der Feuerwehr eingesetzt werden.

Entwicklung besserer Prothesen

Die Forschungsergebnisse sind aber auch für Menschen von Bedeutung. Renjewski, der zum Mai diesen Jahres an die TUM wechselte, beschäftigt sich in einem nächsten Schritt mit der Übertragung der gewonnenen Erkenntnisse auf Roboter zur Gangrehabilitation und Prothesen.

Originalpublikation: Daniel Renjewski, Alexander Sprowitz, Andrew Peekema, Mikhail Jones, Jonathan Hurst: "Exciting Engineered Passive Dynamics in a Bipedal Robot", IEEE Transactions on Robotics, Volume 31, Issue 5;
DOI: 10.1109/TRO.2015.2473456

Die Arbeit wurde gefördert von der National Science Foundation, der Defense Advanced Research Projects Agency und dem Human Frontier Science Program.

Kontakt

Dr. Daniel Renjewski
Technische Universität München
Lehrstuhl für Echtzeitsysteme und Robotik (Prof. Alois Knoll)
+49 (0)89 289 18133
daniel.renjewski@tum.de

Prof. Jonathan Hurst
Oregon State University
Associate Professor of Mechanical Engineering
+1-541-737-7010
jonathan.hurst@oregonstate.edu

Weitere Informationen:

https://flic.kr/p/s6hFdj Foto zum Download (Flickr)
https://www.youtube.com/watch?v=dl7KUUVHC-M Video auf Youtube
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32711/ Meldung auf der TUM-Webseite

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32711/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Smart Glasses Guide: Neues Tool zur Auswahl von Datenbrillen und Anwendungen
15.10.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Einzigartige Infrastruktur für Deep Learning – DFKI erhält ersten NVIDIA DGX2 Supercomputer Europas
11.10.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics