Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit kleinster Hochgeschwindigkeit-Modulator entwickelt

22.11.2012
Energieeffizienter Baustein für die Datenübertragung der Zukunft wird zur Marktreife geführt

Einem Team aus der TU Berlin ist es in Zusammenarbeit mit dem IHP-Leibniz-Institut für innovative Mikroelektronik aus Frankfurt (Oder) jetzt gelungen, durch ein innovatives Design den bisher weltweit kleinsten Hochgeschwindigkeit-Modulator mit einer Länge von weniger als 10 µm für photonisch-integrierte Schaltkreise zu entwickeln.


Dieser Silicon-on-Insulator (SOI) Chip ist 26×11 Quadratmillimeter klein und hat über 700 verschiedene optische Bauelemente.
© TU Berlin

Bei gleichzeitig hohen Modulationsgeschwindigkeiten von bis zu 25 Gigabaud besitzt er eine sehr hohe Temperaturstabilität und einen äu-ßerst geringen Energieverbrauch von nur 200 Femtojoule/Bit. Modulatoren werden in der Nachrichtentechnik zur Übertragung von Informationen eingesetzt.

Die Bauelemente basieren auf der Technologie der Silizium-Photonik, mit der Forscherinnen und Forscher eine Plattform miniaturisierter integrierter Bauelemente entwickeln und diese zu funktionalen Baugruppen aus komplexen photonischen Schaltkreisen auf einem Chip zusammenfügen. Die Fertigung dieser „optischen“ Chips erfolgt durch das Leibniz-Institut, mit dem die TU Berlin eine langjährige Kooperation verbindet; insbesondere im Rahmen des Joint Lab „Silicon Photonics“.

Die Bewältigung des weltweit stark zunehmenden Datenverkehrs stellt für unsere Gesellschaft eine zentrale Herausforderung dar. Daher sind neue innovative Hardwarekonzepte nötig, um höhere Übertragungskapazitäten für den steigenden Bedarf an Bandbreite zur Verfügung stellen zu können. Da die „konventionelle“ Kommunikationstechnologie auf Basis von Kupferleitungen an ihre physikalischen Grenzen stößt, werden heute in zunehmendem Maße schnelle, energieeffiziente optische Übertragungssysteme eingesetzt. Für die Mittel- bis Langstreckenkommunikation (>2 km) mit hohen Datenkapazitäten, zum Beispiel bei Internet Backbones, werden bereits heute ausschließlich optische Faser-basierte Systeme verwendet. Zudem dringen optische Systeme auch immer mehr in die Kurzstrecken-Bereiche ein, wie man sie bei der Datenzentren- und Computerperipherie-Kommunikation vorfindet.
Es sind jedoch extrem kostengünstige Lösungen zur Etablierung optischer Systeme in diesen Massenmärkten erforderlich, die aufgrund der hohen Komplexität und aufwändigen Fertigungstechnik heutiger optischer Übertragungstechnologien nicht realisierbar sind. Der aussichtsreichste Lösungsansatz dieses Problems liegt in der Entwicklung einer neuartigen hochintegrierten Hardware auf Basis der Silizium-Photonik, welche in den vergangenen Jahren enorme technologische Fortschritte gemacht und weltweit stark an Bedeutung gewonnen hat.

Silizium, das Basismaterial der Informationstechnologie, ist für Laserlicht im infraroten Spektralbereich transparent. Dieses Licht kann in sogenannten Nano-Wellenleitern, ähnlich wie elektrischer Strom in Metalldrähten, auf engem Raum geführt und um Kurven mit Radien von 5 µm geleitet werden. Mit Hilfe elektro-optischer Effekte kann nun das in Silizium geführte Licht manipuliert werden, so durch An- und Ausschalten, Verstärkung oder durch Filter- und Steuerungsfunktionen. Weiterhin ist es möglich, sowohl die photonischen als auch die mikroelektronischen Funktionen gemeinsam auf einem einzigen Chip auf engstem Raum zu integrieren. Die Herstellung dieser Chips erfolgt dabei mit der für die elektronischen Schaltkreise optimierten und etablierten Produktionslinien (CMOS). Sowohl bei der Chip-Herstellung als auch beim Packaging kann dabei auf das umfangreiche Know-how aus der hochentwickelten Mikroelektronik zurückgegriffen werden. In Analogie zur Halbleitertechnologie können auf diese Weise komplexe Module in großen Volumina bei gleichzeitig niedrigen Stückkosten hergestellt werden.

Die Herausforderung bleibt jedoch die effiziente Zusammenführung der Basiselemente zu einem leistungsstarken marktfähigen Produkt. Insbesondere die Modulator-Einheit stellt sich dabei als technisch besonders anspruchsvoll dar. Hier gilt es, eine effiziente Kombination aus Laserquelle, elektro-optischem Modulator und Treiberelektronik zu entwickeln. Bisher konnte für dieses Modul keine optimale Lösung aufgezeigt werden, welche gleichzeitig alle Anforderungen an die Schaltgeschwindigkeit, Baugröße, Zuverlässigkeit und den Energieverbrauch für die Implementierung in einen optischen Transceiver, der als Schnittstelle zwischen optischer und elektrischer Übertragungsstrecke fungiert, erfüllt.

In einer Kooperation zwischen dem Institut für Optik und Atomare Physik der TU Berlin und dem Leibniz-Institut IHP konnte nun mit dem Hochgeschwindigkeit-Modulator eine neuartige Lösung entwickelt werden.

Als Kernstück besitzt das Modulator-Design einen optischen Resonator mit Spiegeln aus eindimensionalen photonischen Kristallen. In Kombination mit einer besonders kleinen und effizienten elektrischen Diode kann die Lichttransmission durch den Modulator mit hoher Geschwindigkeit geschaltet werden. Dieser Leistungssprung wurde erst möglich durch die gezielte Verknüpfung der elektrischen und optischen Eigenschaften des Modulators.
Die Prozessentwicklung und Fertigung dieser Chips mit den integrierten elektro-optischen Modulatoren erfolgt durch das IHP, das mit seiner Prozesslinie sich in einzigartiger Weise für die Herstellung sowohl optisch-integrierter Bauelemente und Strukturen als auch extrem schneller elektronischer Schaltkreise eignet.

In dem seit September diesen Jahres vom Bundesforschungsministerium mit insgesamt 1,6 Millionen Euro geförderten Forschungsprojekt „Silimod“ wird das Team um die Physiker Dr. Stefan Meister, Dr. Christoph Theiss und Dr. Hanjo Rhee von der TU Berlin zusammen mit den Wissenschaftlern des Leibniz-Instituts um Dr. Lars Zimmermann dieses innovative Modulator-Bauelement zu einem marktfähigen Demonstrator weiterentwickeln. Betreut wird das Projekt von Prof. Dr. Ulrike Woggon und Prof. Dr. Hans J. Eichler im Rahmen der VIP-Fördermaßnahme (Validierung des Innovationspotenzials wissenschaftlicher Forschung) über einen Zeitraum von drei Jahren. Dieses Programm soll entscheidend dazu beitragen, das Potenzial neuer Ergebnisse der wissenschaftlichen Forschung für eine nachfolgende wirtschaftliche Verwertung auszuschöpfen und damit die Voraussetzung für eine erfolgreiche Weiterentwicklung zu innovativen Produkten zu schaffen. Bei erfolgreicher Validierung wird ein zentrales Bauelement für Photonisch-Integrierte-Schaltkreise zur Verfügung stehen, mit denen sich die Netzwerke der nächsten Generation realisieren lassen.

Fotomaterial zum Download
www.tu-berlin.de/?id=127759

Weitere Informationen erteilen Ihnen gern:
Prof. Dr. Ulrike Woggon, TU Berlin, Institut für Optik und Atomare Physik, AG Nichtlineare Optik und Laserphysik, Tel.: 030 / 314-21699, E-Mail:
ulrike.woggon@tu-berlin.de, Internet: www.tu-berlin.de/?id=110275

Dr. Stefan Meister, TU Berlin, Institut für Optik und Atomare Physik, AG Nichtlineare Optik und Laserphysik, Tel.: 030 / 314-26227, E-Mail: smeister@physik.tu-berlin.de

Dr. Lars Zimmermann, IHP Frankfurt (Oder), AG Si Photonics, Tel.: 0335 / 5625 407, E-Mail: lzimmermann@ihp-microelectronics.com, Internet:

www.ihp-microelectronics.com/

Stefanie Terp | idw
Weitere Informationen:
http://www.ihp-microelectronics.com/
http://www.tu-berlin.de/?id=110275

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein Baukasten für umsichtige Roboter
25.06.2019 | Technische Universität München

nachricht Künstliche Intelligenz lernt Nervenzellen am Aussehen zu erkennen
21.06.2019 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einzelne Atome im Visier

Mit der NMR-Spektroskopie ist es in den letzten Jahrzehnten möglich geworden, die räumliche Struktur von chemischen und biochemischen Moleküle zu erfassen. ETH-Forschende haben nun einen Weg gefunden, wie man dieses Messprinzip auf einzelne Atome anwenden kann.

Die Kernspinresonanz-Spektroskopie – kurz NMR-Spektroskopie – ist eine der wichtigsten physikalisch-chemischen Untersuchungsmethoden. Damit lässt sich...

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

17. Internationale Conference on Carbon Dioxide Utilization in Aachen

25.06.2019 | Veranstaltungen

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Einzelne Atome im Visier

25.06.2019 | Physik Astronomie

Clever Chillen mit weniger Kältemittel: Neue Blue e Chiller von 11 bis 25 kW

25.06.2019 | Energie und Elektrotechnik

Neuer Therapieansatz fördert die Reparatur von Blutgefässen nach einem Hirnschlag

25.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics