Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erster Parallelrechner auf Grundlage von biomolekularen Motoren

26.02.2016

Bahnbrechende Veröffentlichung über Entwicklung eines biologischen Rechners, der auf nanotechnologisch hergestellten Kanälen basiert und mit Hilfe von Protein-Filamenten, angetrieben durch Molekularmotoren, parallele Rechenoperationen ausführen kann.

Eine Publikation, welche diese Woche in den Proceedings of the National Academy of Sciences veröffentlicht wurde, beschreibt einen neuartigen Ansatz für einen Parallel-Rechner, welcher auf einer Kombination von Nanotechnologie mit biomolekularen Motoren basiert und auf die Lösung mathematischer Probleme spezialisiert ist, die ein herkömmlicher Rechner nur schwer lösen kann.


Fig. 3b

Split junction overview. Illustration of protein filaments (red) propelled by molecular motors (green) arriving at a junction where they perform a calculation operation (adding 5 or adding 0).

Beispiele für solche Probleme sind das Optimieren von Schaltkreisen, Proteinfaltung oder Routenplanung. Die bahnbrechende Methode wurde von Forschern der Technischen Universität Dresden und des Max-Planck-Institutes für Molekulare Zellbiologie und Genetik, Dresden, in Kollaboration mit internationalen Partnern aus Kanada, England, Schweden, den USA und den Niederlanden entwickelt.

Herkömmliche Computer führten zu beachtlichen technologischen Entwicklungen in den vergangenen Jahrzehnten. Allerdings limitiert deren lineares Vorgehen – also das Lösen von Aufgaben nacheinander – die Berechnung kombinatorischer Probleme wie zum Beispiel Proteindesign und –faltung, optimierte Schaltkreise oder Routenplanung. Das liegt daran, dass bei diesen Problemen die Zahl der nötigen Berechnungen exponentiell mit der Größe des zu lösenden Problems steigt.

Dies führt dazu, dass die schiere Anzahl an Rechenoperationen einen herkömmlichen, sequentiell rechnenden Computer schon bei relativ kleinen Problemen überfordert. Paralleles Rechnen kann solche Probleme prinzipiell lösen, allerdings hat es noch keine der bislang entwickelten Methoden zur Anwendungsreife gebracht.

Der von den Wissenschaftlern nun beschriebene Ansatz zielt darauf ab, dies zu ändern, indem etablierte Nano-Fertigungsmethoden mit der Verwendung von biomolekularen Motoren der Zelle kombiniert werden. Diese Motoren sind hochgradig energie-effizient und können von Natur aus hochparallel arbeiten.

Die Methode wurde von den Forschern am Beispiel eines klassischen kombinatorischen Problems getestet. Das zu lösende Problem wurde mittels eines Netzwerks von Nanokanälen auf einem Trägersubstrat ‚codiert‘ (Abb. 1a). Dazu musste zunächst ein mathematisch berechnetes, geometrisches Netzwerk entworfen werden, welches die Problemstellung geeignet repräsentiert. Im nächsten Schritt wurde dieses Kanal-Netzwerk mit Hilfe von Lithographie – einer herkömmlichen Methode zur Herstellung von Siliziumchips – physisch nachgebaut.

Dieses Netzwerk wird nun von vielen Protein-Filamenten (hier Aktinfilamente oder Mikrotubuli) zeitgleich durchlaufen, welche von Motorproteinen (hier Myosin oder Kinesin) am Boden der Kanäle angetrieben werden (Abb. 3a). Der Aufbau der Kreuzungen zwischen den Kanälen des Netzwerkes bewirkt, dass die Proteinfilamente alle möglichen Lösungen des Problems finden (Abb. 1b).

Dafür sind lediglich zwei verschiedene Typen von Kreuzungspunkten nötig: ‚Verteilungskreuzungen‘ (Abb. 2a und Abb. 3b) verteilen die Filamente auf alle möglichen Lösungen und ‚Durchlaufkreuzungen‘ (Abb. 2b und Abb. 3c) sorgen dafür, dass die Filamente einen korrekten Lösungsweg nicht verlassen. So erreichten die Wissenschaftler ein ‚intelligentes‘ Netz, welches die Kraft biomolekularer Motoren für grundlegende Rechenaufgaben nutzbar macht.

Die benötigte Zeit, um solche kombinatorischen Probleme mit einer Größenordnung N im parallelen Rechnen zu lösen, potenziert sich ungefähr auf N2. Dies ist eine drastische Verbesserung gegenüber der exponentiell steigenden Zeit (2N), die sich für die Berechnung mit einem herkömmlichen Computer ergibt. Ein weiterer Vorteil ist, dass diese neue Methode voll anpassbar an existierende Technologien ist und um Größenordnungen weniger Energie benötigt als konventionelle Rechner, welche durch die entstehende Hitzeentwicklung grundlegend in ihrer Leistung limitiert werden.


Informationen für Journalisten:
Prof. Dr. Stefan Diez
Technische Universität Dresden
ZIK B CUBE - Center for Molecular Bioengineering
Tel.: +49 (0) 351 463 43010
Fax: +49 (0) 351 463 40322
stefan.diez@tu-dresden.de

Dr. Till Korten
Technische Universität Dresden
ZIK B CUBE - Center for Molecular Bioengineering
Tel.: +49 (0) 351 210 2662
till.korten@tu-dresden.de

Press Images

Image Credits: Till Korten, B CUBE; Mercy Lard, Lund University; Falco van Delft, Philips Research

Weitere Informationen:

https://cfaed.tu-dresden.de/press-releases-201/worlds-first-parallel-computer-ba...

Matthias Hahndorf | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Fraunhofer IPT und Partner setzen Standards für Augmented-Reality-Anwendungen in der Produktion
04.08.2020 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Projekt Applikationszentrum V/AR stellt vergleichende Messung von VR-Trackingsystemen vor
04.08.2020 | Virtual Dimension Center Fellbach w. V.

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Im Focus: Lastenfahrräder: Leichtbaupotenziale erkennen und nutzen

Lastenräder sind »hipp« und ein Symbol für klimafreundliche Mobilität, tagtäglich begegnen wir ihnen. Straßen und Radwege müssen an diese neue Fahrzeugkategorie angepasst werden. Aber nicht nur die Infrastruktur kann optimiert werden, Lastenräder selbst bieten noch reichlich Potenzial. Im neu gestarteten Projekt »LastenLeichtBauFahrrad« (L-LBF) suchen Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF zusätzliche Leichtbaupotenziale dieser urbanen Vehikel. Über die Fortschritte des Projekts informiert eine eigene Webseite unter www.lbf.fraunhofer.de/L-LBF 

Form und Design von Lastenfahrrädern variieren von schnittig schick bis kastig oder tonnig. Sie stellen das neue Statussymbol der »mittleren Generation« dar....

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

Städte als zukünftige Orte der Nahrungsmittelproduktion?

29.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tief in die Zelle geblickt

05.08.2020 | Biowissenschaften Chemie

Tellur macht den Unterschied

05.08.2020 | Biowissenschaften Chemie

Humane zellbasierte Testsysteme für Toxizitätsstudien: Ready-to-use Tox-Assay (hiPS)

05.08.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics