Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erster Parallelrechner auf Grundlage von biomolekularen Motoren

26.02.2016

Bahnbrechende Veröffentlichung über Entwicklung eines biologischen Rechners, der auf nanotechnologisch hergestellten Kanälen basiert und mit Hilfe von Protein-Filamenten, angetrieben durch Molekularmotoren, parallele Rechenoperationen ausführen kann.

Eine Publikation, welche diese Woche in den Proceedings of the National Academy of Sciences veröffentlicht wurde, beschreibt einen neuartigen Ansatz für einen Parallel-Rechner, welcher auf einer Kombination von Nanotechnologie mit biomolekularen Motoren basiert und auf die Lösung mathematischer Probleme spezialisiert ist, die ein herkömmlicher Rechner nur schwer lösen kann.


Fig. 3b

Split junction overview. Illustration of protein filaments (red) propelled by molecular motors (green) arriving at a junction where they perform a calculation operation (adding 5 or adding 0).

Beispiele für solche Probleme sind das Optimieren von Schaltkreisen, Proteinfaltung oder Routenplanung. Die bahnbrechende Methode wurde von Forschern der Technischen Universität Dresden und des Max-Planck-Institutes für Molekulare Zellbiologie und Genetik, Dresden, in Kollaboration mit internationalen Partnern aus Kanada, England, Schweden, den USA und den Niederlanden entwickelt.

Herkömmliche Computer führten zu beachtlichen technologischen Entwicklungen in den vergangenen Jahrzehnten. Allerdings limitiert deren lineares Vorgehen – also das Lösen von Aufgaben nacheinander – die Berechnung kombinatorischer Probleme wie zum Beispiel Proteindesign und –faltung, optimierte Schaltkreise oder Routenplanung. Das liegt daran, dass bei diesen Problemen die Zahl der nötigen Berechnungen exponentiell mit der Größe des zu lösenden Problems steigt.

Dies führt dazu, dass die schiere Anzahl an Rechenoperationen einen herkömmlichen, sequentiell rechnenden Computer schon bei relativ kleinen Problemen überfordert. Paralleles Rechnen kann solche Probleme prinzipiell lösen, allerdings hat es noch keine der bislang entwickelten Methoden zur Anwendungsreife gebracht.

Der von den Wissenschaftlern nun beschriebene Ansatz zielt darauf ab, dies zu ändern, indem etablierte Nano-Fertigungsmethoden mit der Verwendung von biomolekularen Motoren der Zelle kombiniert werden. Diese Motoren sind hochgradig energie-effizient und können von Natur aus hochparallel arbeiten.

Die Methode wurde von den Forschern am Beispiel eines klassischen kombinatorischen Problems getestet. Das zu lösende Problem wurde mittels eines Netzwerks von Nanokanälen auf einem Trägersubstrat ‚codiert‘ (Abb. 1a). Dazu musste zunächst ein mathematisch berechnetes, geometrisches Netzwerk entworfen werden, welches die Problemstellung geeignet repräsentiert. Im nächsten Schritt wurde dieses Kanal-Netzwerk mit Hilfe von Lithographie – einer herkömmlichen Methode zur Herstellung von Siliziumchips – physisch nachgebaut.

Dieses Netzwerk wird nun von vielen Protein-Filamenten (hier Aktinfilamente oder Mikrotubuli) zeitgleich durchlaufen, welche von Motorproteinen (hier Myosin oder Kinesin) am Boden der Kanäle angetrieben werden (Abb. 3a). Der Aufbau der Kreuzungen zwischen den Kanälen des Netzwerkes bewirkt, dass die Proteinfilamente alle möglichen Lösungen des Problems finden (Abb. 1b).

Dafür sind lediglich zwei verschiedene Typen von Kreuzungspunkten nötig: ‚Verteilungskreuzungen‘ (Abb. 2a und Abb. 3b) verteilen die Filamente auf alle möglichen Lösungen und ‚Durchlaufkreuzungen‘ (Abb. 2b und Abb. 3c) sorgen dafür, dass die Filamente einen korrekten Lösungsweg nicht verlassen. So erreichten die Wissenschaftler ein ‚intelligentes‘ Netz, welches die Kraft biomolekularer Motoren für grundlegende Rechenaufgaben nutzbar macht.

Die benötigte Zeit, um solche kombinatorischen Probleme mit einer Größenordnung N im parallelen Rechnen zu lösen, potenziert sich ungefähr auf N2. Dies ist eine drastische Verbesserung gegenüber der exponentiell steigenden Zeit (2N), die sich für die Berechnung mit einem herkömmlichen Computer ergibt. Ein weiterer Vorteil ist, dass diese neue Methode voll anpassbar an existierende Technologien ist und um Größenordnungen weniger Energie benötigt als konventionelle Rechner, welche durch die entstehende Hitzeentwicklung grundlegend in ihrer Leistung limitiert werden.


Informationen für Journalisten:
Prof. Dr. Stefan Diez
Technische Universität Dresden
ZIK B CUBE - Center for Molecular Bioengineering
Tel.: +49 (0) 351 463 43010
Fax: +49 (0) 351 463 40322
stefan.diez@tu-dresden.de

Dr. Till Korten
Technische Universität Dresden
ZIK B CUBE - Center for Molecular Bioengineering
Tel.: +49 (0) 351 210 2662
till.korten@tu-dresden.de

Press Images

Image Credits: Till Korten, B CUBE; Mercy Lard, Lund University; Falco van Delft, Philips Research

Weitere Informationen:

https://cfaed.tu-dresden.de/press-releases-201/worlds-first-parallel-computer-ba...

Matthias Hahndorf | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Dank Hochfrequenz wird Kommunikation ins All möglich
17.10.2019 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Besser reagieren auf extreme Wetterereignisse: Forscher entwickeln europäische Frühwarnplattform
17.10.2019 | Universität Paderborn

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics