Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tausend Mal schneller als Flash-Speicher: Schnelles Speichermaterial im Neutronenlicht

07.12.2018

Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bisherige Flash-Speicherchips. Mithilfe der Forschungs-Neutronenquelle der Technischen Universität München (TUM) haben deutsche und US-amerikanische Forscher wichtige Erkenntnisse über das vielversprechende Material gewonnen.

Phasenwechselspeicher sichern Daten, indem sie den Aggregatszustand der einzelnen Bits zwischen flüssig, glasartig und kristallin ändern. Ein elektromagnetisches Feld, Wärme- oder Lichtimpulse schalten zwischen den Phasen hin und her. Die Technologie hat das Potenzial, kostengünstige, schnelle und hochdichte Speicher bereitzustellen.


Dr. Zachary Evenson am TOFTOF Flugzeitspektrometer im FRM II

Bild: S. Mast / TUM

Konzerne wie Intel, IBM und Samsung versuchen deshalb das Prinzip von Phasenwechselspeichern seit langem in technisch nutzbare Produkte umzusetzen.

Es ist immer noch unklar, wie das Material die Aggregatsänderungen in so kurzer Zeit bewerkstelligt und dies auch mit der nötigen Präzision ausgeführt werden kann.

Tausend Mal schneller und noch stabiler

Nun beschreibt ein Team von Wissenschaftlern der Arizona State University, der RWTH Aachen, der Universität des Saarlandes und der TU München, wie eine Legierung aus Germanium, Antimon und Tellur tausend Mal schneller arbeiten könnte als aktuelle Flash-Speicher.

Gleichzeitig soll es sich viel häufiger auslesen lassen. Sie fanden, dass sich bei dieser speziellen Mischung die Phasenänderungen schärfer abgegrenzt und reproduzierbarer steuern lassen als bei anderen bisher untersuchten Materialien.

Glasartig-feste Flüssigkeit

In ihrer Arbeit untersuchten die Wissenschaftler um Dr. Shuai Wei (RWTH) und Dr. Zach Evenson (TUM) die Legierung in ihrem glasartig-flüssigen Zustand mit Hilfe der Neutronenstreuung am Heinz Maier-Leibnitz Zentrum in Garching.

„Die hohe Auflösung und der hohe Fluss des Flugzeitspektrometers TOFTOF an der Neutronenquelle FRM II war notwendig, um die Bewegung der Teilchen sehen zu können“, erklärt Dr. Zachary Evenson, der zu dieser Zeit Instrumentwissenschaftler an der TUM war.

Im Widerspruch zu Einstein

Die Forscher sind überzeugt, dass beim Mischen von Germanium, Antimon und Tellur in einem speziellen Verhältnis sowohl die Dichtemaxima als auch die damit verbundenen Metall-zu-Nichtmetall-Übergänge unter den Schmelzpunkt gedrückt werden und damit der Übergang viel schärfer wird als in anderen derartigen Verbindungen.

Sie zeigen damit sogar, dass eine Gleichung, die Albert Einstein in seiner Doktorarbeit aufgestellt hatte, für ihr Material nicht gilt: Sie beschreibt die Bewegung von Teilchen wie eine Kugel, die in einem Honigglas versinkt.

Diese Gleichung wird aber bislang auch für die Phasenwechselspeicher angenommen. "Unsere Ergebnisse beweisen, dass diese Gleichung bei Temperaturen oberhalb des Schmelzpunktes nicht mehr gilt“, sagen die Physiker in ihrer Studie.

Null und Eins

Oberhalb des Phasenübergangs hat die Flüssigkeit eine hohe Viskosität, die Kristallisation ist sehr schnell. Unterhalb hingegen erstarrt die Flüssigkeit schnell und behält den schlecht leitenden, amorphen Zustand bei.

In „nanoskopischen Bits“ bleibt dieser Zustand praktisch unbegrenzt erhalten. Erst ein gezielter, kurzer Wärmeimpuls lässt die Temperatur lokal schnell ansteigen, so dass das Bit innerhalb von Nanosekunden in den leitenden Zustand übergeht.

Dieser entspricht einem Bit in der Stellung „1“. Ein längerer Puls, beispielsweise eines Infrarotlasers, gefolgt von einer schnellen Abkühlung, führt wieder in den schlecht leitenden Zustand, der Position „0“.

Weitere Informationen:

Gefördert wurde diese Arbeit durch die Deutsche Forschungsgemeinschaft, die Alexander-von-Humboldt-Stiftung, einen Start-up-Fonds der RWTH Aachen und die National Science Foundation der USA.

Originalpublikation:

Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change material
Shuai Wei, Zach Evenson, Moritz Stolpe, Pierre Lucas and C. Austen Angell
Science Advances Vol. 4, 11, DOI: 10.1126/sciadv.aat8632
Link: http://advances.sciencemag.org/content/4/11/eaat8632

Weitere Informationen:

https://www.mlz-garching.de/instrumente-und-labore/spektroskopie/toftof.html Website des Instruments TOFTOF am FRM II
http://www.frm2.tum.de/startseite/ Website der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) an der Technischen Universität München
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/35132/ Presseinformation der TUM

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Künftig ohne Zaun Hand in Hand mit dem Roboter: Forschungen zum Miteinander von Mensch und Maschine
14.02.2019 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Sichere Muster für die Smartphone-Displaysperre
14.02.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Verwandlung im Licht

Laserphysiker nehmen Schnappschüsse vom Kohlenstoffmolekül C₆₀ auf und weisen seine Verwandlung im starken Infrarotlicht nach

Gerät das Kohlenstoffmolekül C₆₀ unter den Einfluss eines starken infraroten Lichtfeldes, ändert es seine kugelartige Form hin zu einer länglichen.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Deutscher Fachkongress für kommunales Energiemanagement: Fokus Energie – Architektur – BauKultur

13.02.2019 | Veranstaltungen

Chemiedozententagung in Koblenz

12.02.2019 | Veranstaltungen

City.Country.Life Tagung

11.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rezeptorsignale in Nervenzellen steuern und sichtbar machen

14.02.2019 | Biowissenschaften Chemie

Mit künstlicher Intelligenz das Erdsystem verstehen

14.02.2019 | Geowissenschaften

Chemisches Data Mining beschleunigt Suche nach neuen organischen Halbleitern: Molekulares Lego

14.02.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics