Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supercomputer entschlüsseln Materialverschleiß

30.06.2020

Revolutionäre neue Methoden für die Materialwissenschaft: Riesengroße Computersimulationen erlauben an der TU Wien erstmals einen genauen Blick auf Verschleiß und Reibung.

Verschleiß und Reibung sind ganz entscheidende Themen für viele Industriebereiche: Was passiert, wenn eine Oberfläche über eine andere gleitet? Mit welchen Materialveränderungen muss man dabei rechnen? Was bedeutet das für die Haltbarkeit und Sicherheit von Maschinen?


Ein kleines Stück Metall wird von oben belastet, die einzelnen Körnchen des Metalls werden auf atomarer Skala berechnet.

TU Wien

Was dabei auf atomarer Ebene passiert, lässt sich nicht direkt beobachten. Nun steht dafür allerdings ein neues zusätzliches wissenschaftliches Werkzeug zur Verfügung: Aufwändige Computersimulationen werden nun erstmals so leistungsfähig, dass man Verschleiß und Reibung realer Werkstoffe auf atomarer Skala simulieren kann.

Dass diese neue Forschungsrichtung nun verlässliche Ergebnisse liefert, beweist das Tribologie-Team an der TU Wien, geleitet von Prof. Carsten Gachot (Institut für Konstruktionswissenschaften und Produktentwicklung) nun in einer aktuellen Publikation im renommierten Fachjournal „ACS Applied Materials & Interfaces“.

Das Verhalten von Oberflächen aus Kupfer und Nickel konnte mit großen Hochleistungsrechnern simuliert werden. Die Ergebnisse stimmen verblüffend genau mit Bildern aus dem Elektronenmikroskop überein – liefern aber noch wertvolle Zusatzinformation.

Reibung verändert winzige Körnchen

Mit freiem Auge sieht es nicht besonders spektakulär aus, wenn zwei Oberflächen aneinander gleiten. Doch auf mikroskopischer Ebene laufen dabei hochkomplizierte Vorgänge ab:

„Metalle, wie man sie in der Technik verwendet, haben eine spezielle Mikrostruktur“, erklärt Dr. Stefan Eder, Erstautor der aktuellen Publikation. „Sie bestehen aus kleinen Körnchen, mit einem Durchmesser in der Größenordnung von Mikrometern oder noch kleiner.“

Wenn nun ein Metall unter großer Scherbelastung über das andere gleitet, dann geraten die Körnchen der beiden Materialien aneinander: Die Körnchen können dabei gedreht, verformt oder verschoben werden, sie können in kleinere Körnchen zerteilt werden oder durch erhöhte Temperatur oder mechanische Einwirkung wachsen.

All diese Prozesse, die auf mikroskopischer Skala ablaufen, bestimmen letztlich das Verhalten des Materials auf großer Skala – und damit entscheiden sie auch über die Lebensdauer einer Maschine, wie viel Energie in einem Motor durch Reibung verlorengeht oder wie gut eine Bremse funktioniert, in der eine möglichst hohe Reibkraft erwünscht ist.

Computersimulation und Experiment

„Das Ergebnis dieser mikroskopischen Prozesse kann man danach unter dem Elektronenmikroskop untersuchen“, sagt Stefan Eder. „Man erkennt, wie sich die Kornstruktur der Oberfläche verändert hat. Allerdings war es bisher nicht möglich, den Ablauf dieser Prozesse zu studieren und genau zu erklären, wodurch welche Effekte zu welchem Zeitpunkt verursacht werden.“

Diese Lücke schließen nun große Molekulardynamik-Simulationen, die das Tribologie-Team der TU Wien in Zusammenarbeit mit dem Exzellenzzentrum für Tribologie (AC²T) in Wiener Neustadt und dem Imperial College in London entwickelt:

Atom für Atom werden die Oberflächen am Computer simuliert. Je größer das simulierte Materialstück und je länger der simulierte Zeitabschnitt, umso mehr Computerleistung wird benötigt.

„Wir simulieren Abschnitte mit einer Seitenlänge von bis zu 85 Nanometern, über einige Nanosekunden hinweg“, sagt Stefan Eder. Das klingt nicht viel, ist aber bemerkenswert: Selbst der Vienna Scientific Cluster 4, Österreichs größter Supercomputer, ist mit solchen Aufgaben mitunter monatelang beschäftigt.

Das Team untersuchte den Verschleiß einer Legierung aus Kupfer und Nickel – und zwar bei unterschiedlichen Mischungsverhältnissen der beiden Metalle und unterschiedlichen mechanischen Belastungen. „Unsere Computersimulationen ergaben genau die Vielfalt an Prozessen, an Kornveränderungen und Verschleiß-Effekten, wie man sie aus Experimenten grundsätzlich bereits kennt“, sagt Stefan Eder.

„Wir können damit Bilder produzieren, die genau den Aufnahmen aus dem Elektronenmikroskop entsprechen. Allerdings hat unsere Methode einen entscheidenden Vorteil: Wir können den Prozess danach am Computer im Detail analysieren. Wir wissen, welches Atom zu welchem Zeitpunkt seinen Platz gewechselt hat, und was mit welchem Körnchen in welcher Phase des Prozesses genau passiert ist.“

Verschleiß verstehen – Industrieprozesse optimieren

In der Industrie stoßen die neuen Methoden bereits auf großes Interesse. „Schon seit Jahren wird darüber diskutiert, dass die Tribologie von verlässlichen Computersimulationen profitieren könnte. Nun haben wir ein Stadium erreicht, in dem die Qualität der Simulationen und die verfügbare Rechenleistung so groß sind, dass wir dadurch spannende Fragen beantworten könnten, die auf andere Weise gar nicht zugänglich wären“, sagt Carsten Gachot. So möchte man in Zukunft auch industrielle Prozesse auf atomarer Ebene analysieren, verstehen und verbessern.

Wissenschaftliche Ansprechpartner:

Dr. Stefan Eder
Institut für Konstruktionswissenschaften und Produktentwicklung
Technische Universität Wien
stefan.j.eder@tuwien.ac.at

Originalpublikation:

S. Eder et al., Unraveling and Mapping the Mechanisms for Near-surface Microstructure Evolution in CuNi Alloys under Sliding, ACS Appl. Mater. Interfaces 2020, https://doi.org/10.1021/acsami.0c09302

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
https://www.tuwien.at/tu-wien/aktuelles/news/news/supercomputer-entschluesseln-materialverschleiss/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Nationale Forschungsdateninfrastruktur: Drei Konsortien mit Beteiligung des KIT gefördert
29.06.2020 | Karlsruher Institut für Technologie

nachricht Fraunhofer FKIE: Erhebliche Sicherheitsmängel bei Home Routern festgestellt
26.06.2020 | Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Supercomputer entschlüsseln Materialverschleiß

Revolutionäre neue Methoden für die Materialwissenschaft: Riesengroße Computersimulationen erlauben an der TU Wien erstmals einen genauen Blick auf Verschleiß und Reibung.

Verschleiß und Reibung sind ganz entscheidende Themen für viele Industriebereiche: Was passiert, wenn eine Oberfläche über eine andere gleitet? Mit welchen...

Im Focus: ILA Goes Digital – Automatisierung & Produktionstechnik für die wandlungsfähige Flugzeugproduktion

Live-Event – 1. Juli 2020 – 11:00 bis 11:45 Uhr
»Automation in Aerospace Industry @ Fraunhofer IFAM«

Das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM l Stade präsentiert bis zum 31. Juli 2020 erstmals sein zukunftsweisendes...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: Neuer MRSA-Stamm wird von manchen Tests nicht erkannt

Zwei in der Diagnostik und Krankenhaushygiene verwendeten Schnelltests können einen neuen Stamm von Methicillin-resistenten Staphylococcus aureus (MRSA) nicht detektieren. Dies haben InfectoGnostics-Forscher des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) jetzt mit internationalen Partnern in einer Studie im Fachjournal Eurosurveillance belegt. Der neue Bakterienstamm ist in Europa zunehmend verbreitet und wird wegen einer Veränderung in seinem Genom durch diese molekularen Tests nicht mehr korrekt als MRSA erkannt. Die falsch-negativen Resultate könnten zu Fehlentscheidungen bei der Antibiotika-Therapie führen und Maßnahmen zur Infektionsprävention in Kliniken verzögern.

Molekulare Testmethoden haben in den vergangenen Jahren die Infektionsprävention in vielen Ländern entscheidend verbessert: Kommerzielle Testsysteme auf Basis...

Im Focus: Röntgenblick und Lauschangriff sorgen für Qualität

Mit einem Röntgenversuch an der «European Synchrotron Radiation Facility» (ESRF) im französischen Grenoble wiesen Empa-Forscher nach, wie gut ihre akustische Echtzeitüberwachung von Laserschweissprozessen funktioniert: Mit fast 90-prozentiger Sicherheit erkannten sie die Bildung von unerwünschten Poren, die die Qualität von Schweissnähten beeinträchtigen. Der Nachweis dauert dank einer speziellen Auswertungsmethode, die auf künstlicher Intelligenz (KI) basiert, gerade einmal 70 Millisekunden.

Laserschweissen ist ein Verfahren, das sich zum Fügen von Metallen und Kunststoffen eignet. Es hat sich besonders in der automatisierten Fertigung, etwa in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Implants: Can special coatings reduce complications after implant surgery?

30.06.2020 | Life Sciences

Beavers gnawing away at the permafrost

30.06.2020 | Earth Sciences

Researchers employ antennas for angstrom displacement sensing

29.06.2020 | Physics and Astronomy

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics