Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Software "Virtual Habitat": Einmal Mars und zurück

11.04.2016

Forscher der TUM simulieren Lebenserhaltungssysteme in der Raumfahrt

Der Weltraum ist wohl die lebensfeindlichste Umgebung, die wir kennen. Der fehlende Druck würde unsere Körperflüssigkeiten zum Kochen bringen. Sauerstoff, Wärme, Nahrung und Wasser sind ebenfalls so gut wie nicht vorhanden. Trotzdem leben Menschen dort – auf der Internationalen Raumstation ISS, mithilfe von dort installierten Lebenserhaltungssystemen.


Claas Olthoff (li.) und Daniel Pütz mit einem Modell der Internationalen Raumstation. (Bild: Stefanie Reiffert / TUM)

Auch für längere Weltraummissionen wie eine Reise zum Mars ist die Funktionsfähigkeit dieser Technologien entscheidend. Forscher der Technischen Universität München (TUM) haben eine Software entwickelt, mit deren Hilfe diese Systeme simuliert werden können.

Im Kinofilm „Der Marsianer“ bleibt der Raumfahrer Mark Watney alleine auf dem Mars zurück. Schnell wird deutlich, wie abhängig sein Überleben von den Lebenserhaltungssystemen ist. Er benötigt Sauerstoff, Trinkwasser, Nahrung, Normaldruck und Wärme. Nichts davon liefert ihm der Rote Planet.

Im Weltraum sind die Bedingungen sogar noch extremer. Trotzdem plant die NASA auf lange Sicht Missionen, bei denen Raumfahrer über mehrere Wochen oder Monate unterwegs wären, etwa zu einem Asteroiden oder sogar zum Mars.

„Eine entscheidende Frage dabei ist: Laufen die Lebenserhaltungssysteme über diesen langen Zeitraum stabil?“, erklärt Claas Olthoff, wissenschaftlicher Mitarbeiter am Lehrstuhl für Raumfahrttechnik der TUM. Wechselwirkungen mit anderen Systemen oder auch unvorhergesehene Störungen und Ausfälle müssen berücksichtigt werden.

Mensch steht im Mittelpunkt der Simulation

Seit 2006 arbeiten Wissenschaftler am Lehrstuhl an der Software „Virtual Habitat“, die genau diese Probleme berechnen kann. Mit „V HAB“ simulieren die Forscher Modelle von der Größe eines Raumanzugs bis hin zu einer mit zehn Mann besetzten Mondbasis. Sogar jahrelange Missionen werden berechnet. Der Vorteil des Tools: Es sind bereits zahlreiche funktionsfähige Lebenserhaltungstechnologien programmiert und es können Wechselwirkungen zwischen verschiedenen Systemen berechnet werden.

Ein Kernbestandteil der Software ist ein Modell des menschlichen Körpers, denn die Menschen liefern unter anderem Kohlendioxid und Urin. Dies sind die Ausgangstoffe, die das Lebenserhaltungssystem wiederum verarbeiten kann. Durch eine chemische Reaktion mit Wasserstoff entsteht aus dem Kohlendioxid Methangas und Wasser. Das Lebenserhaltungssystem pumpt das Methan über Bord, das Wasser steht dann wieder den Raumfahrern zur Verfügung und kann als Trinkwasser oder zur Produktion von Sauerstoff durch Elektrolyse verwendet werden. Auch Urin kann in Trinkwasser umgewandelt werden. Diese Wechselwirkungen zwischen Mensch und Maschine sind sehr komplex und "V HAB" versucht möglichst viele davon abzubilden.

Europäisches Lebenserhaltungssystem kommt auf die ISS

Die Software wird ständig weiter entwickelt und mit Modellen von verschiedensten Systemen ergänzt; von einem Radiator zur Kühlung von Raumanzügen bis hin zu Algenkulturen für die Nahrungsproduktion. Während seines Studien-Aufenthalts am Johnson Space Center der NASA in Houston hatte Masterstudent Daniel Pütz etwa die Gelegenheit, den Einbau eines neuen Lebenserhaltungssystems auf der Internationalen Raumstation (ISS) mithilfe von „V HAB“ zu simulieren und so weitere Funktionen zu programmieren und zu testen.

Momentan sind sowohl ein amerikanisches als auch ein russisches Lebenserhaltungssystem auf der ISS installiert. Nun soll ein europäisches dazukommen. Die Weltraumagentur ESA ließ das sogenannte Advanced Closed Loop System (ACLS) von Airbus entwickeln. Durch eine enge Verbindung zwischen den einzelnen Sub-Systemen ist es kompakter und somit platzsparend. 2017 wird es mit einem japanischen Versorgungsschiff zur ISS gebracht und ins amerikanische Labormodul Destiny zu Testzwecken eingebaut.

Zuviel Luftfeuchtigkeit kann Schimmel verursachen

Doch ein neues System birgt auch immer Risiken, erklärt Olthoff. Denn es kann die bestehenden Systeme beeinflussen oder sogar stören. Da ACLS eine andere Technologie zur CO2-Filterung benutze als die bereits installierten Systeme, bestehe hier insbesondere die Gefahr, dass mehr Wasserdampf in die Luft gelange. Auf der Raumstation muss die Luftfeuchtigkeit zwischen 40 und 60 Prozent liegen. Ein höherer Wert wäre gefährlich, da sich an schlecht belüfteten Stellen Schimmel bilden könnte.

Wie Pütz durch die Simulationen herausfand, können die vorhandenen Filterungssysteme die höhere Feuchtigkeit, die durch das System produziert wird, ohne Schwierigkeiten ausgleichen. Auch die anderen Werte bewegen sich im grünen Bereich.

„V-HAB“ wurde bereits von der NASA zur Analyse einer Asteroidenmission genutzt, und daher stehen die Chancen gar nicht so schlecht, dass die Software auch in Zukunft für die Berechnung von geplanten Langzeitmissionen eingesetzt wird. Und so den echten „Marsianern“ vielleicht einen Überlebensvorteil verschafft.

Kontakt:
Dipl.-Ing. Claas Olthoff
Technische Universität München
Lehrstuhl für Raumfahrttechnik
+49 89 289-15997
c.olthoff@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Berichte zu: ISS Kohlendioxid Lebenserhaltungssystem Mars NASA Raumfahrttechnik Raumstation Sauerstoff Software TUM

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht IT-Sicherheit beim autonomen Fahren
22.06.2018 | Fachhochschule St. Pölten

nachricht Schneller und sicherer Fliegen
21.06.2018 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics