Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Robuste Rechenoperationen für den Quantencomputer

10.01.2020

Gemeinsame Pressemitteilung der Leibniz Universität Hannover und der Physikalisch-Technischen Bundesanstalt

Neues Verfahren zur Steuerung von Qubits mit Mikrowellenpulsen reduziert Fehlerquote und erhöht Effizienz


Innenleben der Apparatur, in der die Ionen gefangen werden. Der Einsatz zeigt ein Bild von zwei einzelnen 9Be+ Ionen, mit denen die Rechenoperationen durchgeführt wurden

T. Dubielzig, H. Hahn (LUH/PTB)

Der Quantencomputer gehört zu den faszinierendsten Zukunftsversprechen der Quantentechnologie. Mit seiner erheblich größeren Rechenleistung soll er Aufgaben lösen können, an denen heutige Computer scheitern und es so beispielsweise erlauben, neue Materialien und Wirkstoffe zu verstehen und zu erfinden oder die Grenzen von Verschlüsselungsverfahren auszuloten.

Analog zum Bit im klassischen Computer, bezeichnen sogenannte Quanten-Bits oder Qubits die Speichereinheit in Quantencomputern. Im Moment sind zwei experimentelle Ansätze zu deren Realisierung am weitesten fortgeschritten: Supraleitende Schaltkreise und gefangene Ionen.

Erstere speichern die Quanteninformation in elektronischen Bauelementen, letztere in unterschiedlichen Energieniveaus einzelner Atome. In supraleitenden Schaltkreisen konnte vor kurzem erstmals experimentell gezeigt werden, dass ein Quantencomputer hochspezialisierte Aufgaben bearbeiten kann, an denen ein klassischer Computer scheitert.

Ionen zeichnen sich hingegen dadurch aus, dass die Fehlerrate der Rechenoperationen bisher immer wesentlich geringer war als bei jedem anderen Ansatz.

Forschende der Leibniz Universität Hannover und der Physikalisch-Technischen Bundesanstalt haben nun ein neues Ionen-Verfahren vorgestellt, welches die Fehlerrate weiter reduziert und so deutlich schneller verlässliche Rechenergebnisse liefert. Ihre Arbeit haben sie in der aktuellen Ausgabe des Fachmagazins Physical Review Letters veröffentlicht.

Das Verfahren folgt einem Ansatz, bei dem die Ionen mit Hilfe elektrischer Felder oberhalb einer Chip-Struktur in einem Vakuum festgehalten werden. Die Rechenoperationen auf den Qubits werden durchgeführt, indem Mikrowellensignale durch spezielle, in die Chip-Struktur eingelassene Leiterschleifen geschickt werden.

Üblicherweise werden zur Durchführung von Rechenoperationen extrem genau kontrollierte Laserstrahlen verwendet. Die Verwendung von Mikrowellen hat den Vorteil, dass die Mikrowellentechnologie sehr weit entwickelt ist – vom Flugzeug bis zum Mobiltelefon ist sie allgegenwärtig – und dass es vergleichsweise einfach ist, diese Felder zu kontrollieren

Die Forscherinnen und Forscher haben jetzt untersucht, wie man die Rechenoperationen auf den Qubits am effizientesten durchführt. Das ist eine Frage, die auch in heutigen Computerchips von großer Relevanz ist, denn am Ende entscheidet die Energie, die pro Rechenoperation benötigt wird, darüber, wie viele davon pro Sekunde durchgeführt werden können, bevor der Chip zu heiß wird.

Im Falle des Ionen-Mikrowellen-Quantencomputers konnten die Forschenden zeigen, dass speziell geformte Mikrowellenpulse, bei denen das Mikrowellenfeld langsam auf- und wieder abgebaut wird, bei gleichem Energieeinsatz trotz Vorliegen von Störquellen einhundertmal niedrigere Fehlerraten aufweisen als eine Rechenoperation, bei denen die Felder einfach an- und ausgeknipst werden.

Das Team hatte dazu zusätzliche, genau kontrollierte Störquellen in das Experiment eingebracht und die Rechenfehler für unterschiedlich starke Störquellen und für beide Pulsformen ermittelt.

„Für unser Experiment hat das einen riesigen Unterschied gemacht“, so Giorgio Zarantonello, einer der Autoren der Studie. „Früher mussten wir für gute Rechenoperationen lange probieren und optimieren, bis wir einen Moment erwischten, in dem die Störquellen sehr klein waren. Jetzt können wir unser Experiment einfach einschalten, und es funktioniert!“.

Nachdem die Wissenschaftlerinnen und Wissenschaftler nun zeigen konnten, das elementare Rechenoperationen mit niedrigen Fehlerraten realisiert werden können, wollen sie dies auch für komplexere Aufgaben erreichen. Ihr Ziel ist, deutlich weniger als einen Fehler alle zehntausend Operationen zu erreichen.

Erst dann ist es sinnvoll, die Anwendung auf viele Qubits zu erweitern. Hierzu haben die Wissenschaftlerinnen und Wissenschaftler bereits ein patentiertes Herstellungsverfahren entwickelt, das es ermöglicht, viele Qubits in einer Chipstruktur zu speichern und zu manipulieren.

Ermöglicht wurden die Arbeit durch die Unterstützung des Sonderforschungsbereichs SFB 1227 „DQ-mat“ der Deutschen Forschungsgemeinschaft (DFG), der sich mit der Kontrolle von komplexen quantenmechanischen Systemen beschäftigt. Im Rahmen des SFBs arbeiten experimentelle und theoretische Physiker der Leibniz Universität Hannover, des ZARM Bremen und der PTB Braunschweig zusammen.

Die Arbeiten wurden ferner gefördert durch das Quantentechnologie „Flagship“ der EU. Die EU und ihre Mitgliedsstaaten planen, in den nächsten 10 Jahren eine Milliarde Euro zu investieren, um Erkenntnisse aus der quantenphysikalischen Grundlagenforschung technologisch nutzbar zu machen.

Die Forscherinnen und Forscher aus Hannover und Braunschweig arbeiten hier im Rahmen des Projekts „MicroQC“ zusammen mit Kollegen aus Siegen, Sussex, Jerusalem und Sofia.

Wissenschaftliche Ansprechpartner:

Für weitere Informationen steht Ihnen Prof. Dr. Christian Ospelkaus, Institut für Quantenoptik, unter Telefon +49 511 762 17644 beziehungsweise per E-Mail unter christian.ospelkaus@iqo.uni-hannover.de gern zur Verfügung.

Originalpublikation:

G. Zarantonello, H. Hahn, J. Morgner, M. Schulte, A. Bautista-Salvador, R.F. Werner, K. Hammerer, C. Ospelkaus,
Robust and Resource-Efficient Microwave Near-Field Entangling 9Be+ Gate
Phys. Rev. Lett. 123, 260503 (2019).
https://doi.org/10.1103/PhysRevLett.123.260503

Mechtild Freiin v. Münchhausen | Leibniz Universität Hannover
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer
19.02.2020 | Universität Stuttgart

nachricht Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter
19.02.2020 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics