Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Modell: Schädelform in 3D berechnen – Reduktion von Röntgenaufnahmen möglich

30.01.2019

Ein neues mathematisches Modell des Schädels könnte in Zukunft dazu beitragen, bei medizinischen Untersuchungen des Kopfes mit wenigen oder sogar ganz ohne Röntgenaufnahmen auszukommen und so die Strahlenbelastung für Patientinnen und Patienten deutlich zu reduzieren. Dasselbe Modell kann auch eingesetzt werden, um anhand eines Schädels ein Gesicht zu rekonstruieren. Es könnte somit auch helfen, Kriminalfälle aufzuklären. Forschende des Exzellenzclusters Kognitive Interaktionstechnologie (CITEC) der Universität Bielefeld, der Hochschule RheinMain sowie der Johannes Gutenberg-Universität Mainz haben dieses Modell nun veröffentlicht.

Viele Kinder und Jugendliche tragen für eine bestimmte Zeit eine Zahnspange, weil sie eine Fehlstellung des Kiefers haben. Um die Zahnspange an den jeweiligen Kiefer anzupassen, sind umfassende Untersuchungen notwendig.


Prof. Dr. Ulrich Schwanecke, Leiter der Forschungsgruppe Computer Vision and Mixed Reality an der Hochschule RheinMain

© Hochschule RheinMain

Dazu gehören auch Untersuchungen mit Röntgenstrahlen, bei denen in der Regel der komplette Kiefer aufgenommen wird.

Heutige Röntgengeräte sind moderner als früher und lassen sich zielgerichtet einsetzen. „Trotzdem steigt die Dosis durch Röntgenaufnahmen nachweislich seit den 1990er-Jahren Jahr für Jahr an, so dass alle Maßnahmen zum Strahlenschutz zu begrüßen sind.

Insbesondere Kinder und Jugendliche mit ihrer überproportional erhöhten Strahlenempfindlichkeit sollten so wenig Strahlung ausgesetzt werden wie möglich“, sagt Prof. Dr. Ralf Schulze von der Klinik für Mund-, Kiefer- und Gesichtschirurgie der Universitätsmedizin Mainz.

Er leitet eine Arbeitsgruppe im Forschungsschwerpunkt BiomaTiCS – Biomaterials, Tissues and Cells in Science der Johannes Gutenberg-Universität Mainz (JGU), der sich mit der Interaktion von Geweben und Zellen mit körperfremden Materialien und Oberflächen beschäftigt.

Zudem forscht er mit in dem Verbundprojekt Kephalos der Hochschule RheinMain, welches dort von Prof. Dr. Ulrich Schwanecke, Leiter der Forschungsgruppe Computer Vision and Mixed Reality, geleitet wird. Weitere Projektpartner sind Prof. Dr. Elmar Schömer vom Institut für Informatik der Johannes Gutenberg-Universität Mainz und Prof. Dr. Mario Botsch, Leiter der Forschungsgruppe „Computergrafik und Geometrieverarbeitung“ vom Exzellenzcluster CITEC der Universität Bielefeld.

Ziel des Projekts ist es, eine Methode zu entwickeln, die es erlaubt, die Form des Gesichtsschädels auf Basis von maximal einer Röntgenaufnahme in Verbindung mit einem Gesichtsscan zu berechnen.

Damit ließe sich die Strahlungsdosis für bestimmte Untersuchungen deutlich reduzieren. „In dem Projekt zeigte sich, dass die Berechnung des Gesichtsschädels schon alleine mit einem Gesichtsscan möglich ist. Dies hatten wir ursprünglich nicht erwartet“, sagt Schwanecke.

Je mehr Daten, desto feiner das Modell

Grundlage des präsentierten Verfahrens sind statistische Modelle, welche die Variation von Gesichtern, Gesichtsschädeln sowie der Hautdicke im Gesicht beschreiben. Um die Modelle zu erhalten, analysierten die Forschenden dreidimensionale Aufnahmen von rund 40 Schädeln und 80 Gesichtern, die im Wesentlichen aus der Universitätsmedizin Mainz stammten.

Die Wissenschaftler entwickelten daraus ihre Modelle, welche auf einer Menge von Messpunkten beruhen, die über Dreiecke miteinander verbunden sind und wie ein Netz mit dreieckigen Maschen ein Gesicht oder einen Schädel überziehen.

Die genaue Lage der Eckpunkte dieser Dreiecke ist dabei für jedes Gesicht beziehungsweise jeden Schädel anders. Die entwickelten statistischen Modelle kodieren nun die statistische Verteilung der Eckpunkte zu den analysierten Schädel- oder Gesichtsaufnahmen. „Das Modell wird immer genauer, je mehr Daten wir zur Verfügung haben“, erklärt Botsch.

Modell lässt sich in zwei Richtungen anwenden

Was ist nun das Besondere an dem Modell? Es lässt sich in zwei Richtungen anwenden. „Unser erstes Ziel war es, den Schädel einer Person anhand ihrer Gesichtsform zu berechnen“, sagt Schwanecke. Diese Methode wurde im vergangenen September auf dem Eurographics Workshop on Visual Computing for Biology and Medicine veröffentlicht. Doch auch das Gegenteil funktioniert:

Die Forschenden können rekonstruieren, wie ein Gesicht ausgesehen haben könnte, wenn ihnen ein Schädel vorliegt. „Das ist zum Beispiel für die Forensik interessant, oder auch für die Anthropologie.“

Berechnen lässt sich mit dem Modell dann die dreidimensionale Form eines Gesichts. Dieses sieht allerdings ganz unterschiedlich aus, je nachdem, ob die Person sehr schlank oder aber übergewichtig ist.

„Wir erstellen deshalb verschiedene Varianten“, erklärt Jascha Achenbach, der als Doktorand in Bielefeld an dem Projekt mitarbeitet. Eigentlich wirkt die Haut am Schädel vergleichsweise dünn und liegt eng an. Deshalb könnte man annehmen, dass man leicht vom Gesicht auf den Schädel schließen könnte. „Das ist aber nicht so einfach möglich“, sagt Prof. Dr. Botsch. Ein Grund dafür ist, dass die Dicke der Haut stark variiert: Je nachdem, wie dick oder dünn sie an den einzelnen Stellen ist, kann der Schädel darunter ganz unterschiedlich aussehen. Genau das berücksichtigen aber nun die statistischen Modelle.

Weniger Röntgenstrahlung bei kieferorthopädischen Behandlungen

„Ich gehe davon aus, dass wir auf Basis dieser Modelle zum Beispiel die Anzahl von Röntgenuntersuchungen bei kieferorthopädischen Behandlungen reduzieren können“, sagt Prof. Dr. Schwanecke. Das erwarten auch Thomas Gietzen und Robert Brylka von der Hochschule RheinMain. Sie arbeiten als Doktoranden im Projekt Kephalos.

„Notwendig für unsere Berechnung ist nur ein Oberflächenscan des Gesichts. Dieser kann zusätzlich noch durch eine einzige Röntgenaufnahme von der Seite unterstützt werden“, sagt Thomas Gietzen.

Gefördert wird das Projekt Kephalos vom Bundesministerium für Bildung und Forschung.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ulrich Schwanecke
Leiter des Labors für Computer Vision & Mixed Reality an der Hochschule RheinMain
ulrich.schwanecke@hs-rm.de
https://www.hs-rm.de/de/hochschule/personen/schwanecke-ulrich/

Originalpublikation:

Paper PLOS ONE: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210257
Paper Eurographics: https://diglib.eg.org/handle/10.2312/vcbm20181230

Weitere Informationen:

Zur Pressemitteilung auf der Website der Hochschule RheinMain: https://www.hs-rm.de/fileadmin/Home/Hochschule/Veroeffentlichungen/Pressemitteil...

Katrin Bracko | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg
10.07.2020 | Technische Universität Bergakademie Freiberg

nachricht Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie
10.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics