Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues EU-Forschungsprojekt entwickelt Open-Source-Software für Supercomputer der Exascale-Klasse

28.10.2015

Eine Milliarde Milliarden, also 10^18 Rechenoperationen pro Sekunde (1 ExaFlop/s): Das ist die Leistung, die Supercomputer der nächsten Generation erbringen sollen. Dabei wird die Programmierung dieser Supercomputer selbst zur Herausforderung. Mit „ExaHyPE“ fördert die Europäische Kommission seit Oktober 2015 ein internationales, an der Technischen Universität München (TUM) koordiniertes Projekt, das in den kommenden vier Jahren die algorithmischen Grundlagen dafür legen soll. Ziel ist die Entwicklung einer neuartigen Software, zunächst für Simulationen in der Geo- und Astrophysik, die unter freier Lizenz veröffentlicht wird. Die Fördersumme beträgt 2,8 Millionen Euro.

Simulationsrechnungen treiben den wissenschaftlichen Fortschritt: Neben Theorie und Experiment sind sie das dritte Standbein des Erkenntnisgewinns. Supercomputer erlauben es, immer genauere und kompliziertere Modelle zu berechnen.


Magnetfeldlinien, nachdem der hypermassive Stern zu einem Schwarzen Loch kollabiert

AEI/ZIB

Das EU-Projekt ExaHyPE („An Exascale Hyperbolic PDE Engine“), in dem sich ein interdisziplinäres Forscherteam aus sieben Institutionen in Deutschland, Italien, Großbritannien und Russland zusammengeschlossen hat, bindet sich in die europäische Strategie ein, bis 2020 einen Supercomputer im Exascale-Maßstab zu entwickeln.

Um die gewaltige Rechenleistung auch für entsprechend umfangreiche Simulationsaufgaben nutzen zu können, muss die gesamte Supercomputing-Infrastruktur samt Systemsoftware auf diese Exascale-Systeme vorbereitet werden.

Leistungsstark, flexibel und energieeffizient

Das Supercomputing der Zukunft stellt die ExaHyPE-Wissenschaftler vor gewaltige Herausforderungen. Das größte Hindernis für die Realisierung eines Exascale-Computers ist aktuell noch der Energieverbrauch: Die derzeit schnellsten Supercomputer der Welt – Tianhe-2 (China), Titan, Sequoia (beide USA) sowie der K Computer (Japan) – arbeiten im Petaflop/s-Bereich (10^15 Rechenoperationen pro Sekunde) und benötigen zwischen 8 und 18 Megawatt (Quelle: http://www.top500.org), wobei die Energiekosten rund 1 Million US-Dollar pro Megawatt und Jahr betragen.

„Ein Exascale-Computer, basierend auf aktuellen Technologien, würde mit einem Bedarf von knapp 70 Megawatt sowohl eine finanzielle wie auch eine infrastrukturelle Herausforderung darstellen“, erläutert ExaHyPE-Koordinator Professor Michael Bader von der TUM. „Die in ExaHyPE entwickelte Simulationssoftware wird daher konsequent auf die Anforderungen zukünftiger energieeffizienter Hardware ausgelegt.“

Auf Hardware-Seite ist daher mit einer extremen Parallelisierung zu rechnen. „2020 werden Supercomputer hunderte Millionen Rechenkerne umfassen“, so Bader. „Gleichzeitig wird die Hardware, die zur weiteren Leistungssteigerung an ihre physikalischen Grenzen getrieben wird und dabei zudem möglichst energieeffizient arbeiten muss, vermehrt zu Ausfällen neigen und somit schwankende Leistungskurven aufweisen. ExaHyPE untersucht daher die dynamische Verteilung von Rechenoperationen auf die Kerne, selbst wenn diese während der Rechnung ausfallen.“

Gleichzeitig gilt es, die hardwareinterne Kommunikation bei der Parallelisierung zu reduzieren. Zum einen geht jeder Datenaustausch zulasten des Energieverbrauchs. Zum anderen werden Supercomputer in zehn Jahren zwar 1000-mal so schnell rechnen können wie heute, doch die Zugriffszeit auf den Speicher wird sich nicht im gleichen Maße entwickeln. Um dennoch schnelle, energieeffiziente Rechenoperationen zu gewährleisten, sollen die verwendeten Algorithmen inhärent speichereffizient sein und so wenig Datenaustausch wie möglich erfordern.

Um möglichst geringen Speicherbedarf mit größtmöglichem Nutzen zu kombinieren, entwickelt das Konsortium neue skalierbare Algorithmen, welche die Auflösung von Simulationen, also die verwendeten numerischen Beobachtungspunkte, dort dynamisch erhöhen, wo die Simulationsrechnung dies erfordert – und nur dort. So können die Wissenschaftler die erforderlichen Rechenoperationen auf ein Minimum beschränken und gleichzeitig größtmögliche Genauigkeit in der Simulation erreichen.

Zwei Anwendungsszenarien: Erdbeben und Gammastrahlenexplosionen

Die ExaHyPE-Forscher werden die neuen Algorithmen anhand zweier Anwendungsszenarien aus der Geo- und Astrophysik erarbeiten: Erdbeben und Gammastrahlenexplosionen. Erdbeben lassen sich nicht vorhersagen, doch Simulationen auf Exascale-Supercomputern könnten es erlauben, zumindest die Risiken von Nachbeben besser einzuschätzen. Regionale Erdbebensimulationen versprechen vor allem ein besseres Verständnis der Vorgänge, die sich bei großen Erdbeben und deren Nachbeben abspielen. Im Bereich der Astrophysik soll ExaHyPE Systeme von umeinander rotierenden, sich vereinigenden Neutronensternen simulieren. Solche Systeme sind nicht nur die stärkste vermutete Quelle von Gravitationswellen, sondern könnten auch die Ursache von sogenannten Gammastrahlenexplosionen sein. Exascale-Simulationen sollen ermöglichen, diese seit langem bestehenden Rätsel der Astrophysik in neuem Licht zu studieren.

Trotz der beiden genau definierten Anwendungsgebiete wollen die Forscher die neuen Algorithmen so allgemein halten, dass sie – mit entsprechender Anpassung – auch in weiteren Disziplinen Anwendung finden, beispielsweise zur Simulation von Klima- und Wetterphänomenen oder von komplizierten Strömungs- und Verbrennungsprozessen in den Ingenieurwissenschaften, aber auch bei der Prognose von Naturkatastrophen wie Tsunamis oder Überschwemmungen. „Unser Ziel ist es, dass mittelgroße, interdisziplinäre Forscherteams die Simulationssoftware nach Fertigstellung binnen eines Jahres für ihre spezifischen Zwecke adaptieren können“, so Bader. Um eine rasche Verbreitung der neuen Technologie zu gewährleisten, wird das Konsortium sie unter freier Lizenz veröffentlichen.

Umfassende Expertise durch internationale, interdisziplinäre Kooperation

Die ExaHyPE-Projektziele erfordern eine intensive Zusammenarbeit von Experten über Disziplin- und Ländergrenzen hinweg. Auf deutscher Seite gehören dem Konsortium die Technische Universität München – Prof. Dr. Michael Bader (Institut für Informatik, High Performance Computing), das Frankfurt Institute for Advanced Studies – Prof. Dr. Luciano Rezzolla (Institut für Theoretische Physik, Goethe Universität Frankfurt), die Ludwig-Maximilians-Universität München – Dr. Alice-Agnes Gabriel und Prof. Dr. Heiner Igel (Department für Geo- und Umweltwissenschaften) sowie die Bayerische Forschungsallianz – Dipl.-Ing. Robert Iberl (Fachbereich Informations-/Kommunikationstechnologien) an. Italien ist mit der Università degli Studi di Trento – Prof. Dr. Michael Dumbser (Dipartimento di Ingegneria Civile Ambientale e Meccanica) beteiligt, Großbritannien mit der Durham University – Dr. Tobias Weinzierl (School of Engineering and Computing Sciences). Komplettiert wird das Konsortium durch den russischen Supercomputer-Hersteller ZAO "RSC Technologies" – Alexander Moskovsky (CEO).

Bildmaterial in hoher Auflösung finden Sie unter http://www.bayfor.org/de-exahype.

Zur Bayerischen Forschungsallianz GmbH (BayFOR)
Die Bayerische Forschungsallianz hat das ExaHyPE-Konsortium bei der Antragstellung umfassend unterstützt und bei der Vertragsvorbereitung mit der EU-Kommission begleitet. Im laufenden Projekt übernimmt sie das Projektmanagement sowie die Verbreitung der wissenschaftlichen Ergebnisse. Die BayFOR berät und unterstützt bayerische Akteure aus Wissenschaft und Wirtschaft umfassend beim Einwerben von europäischen Mitteln für Forschung, Entwicklung und Innovation mit dem Ziel, den Wissenschafts- und Innovationsstandort Bayern im Forschungsraum Europa fortzuentwickeln. Der Schwerpunkt liegt dabei auf dem Rahmenprogramm für Forschung und Innovation, Horizon 2020. Als Partner im Enterprise Europe Network bietet sie zudem gezielte Beratung und Unterstützung für bayerische Unternehmen, insbesondere KMU, die sich für eine Teilnahme an EU-Forschungs- und Innovationsprojekten interessieren. Die BayFOR ist eine Partner-Organisation im bayerischen Haus der Forschung (http://www.hausderforschung.bayern.de) und wird vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst gefördert. Weitere Informationen finden Sie unter http://www.bayfor.org.

Kontakt in der BayFOR
Emmanuelle Rouard
Bereichsleiterin Presse- & Öffentlichkeitsarbeit
Tel.: +49 (0)89 9901888-111
E-Mail: rouard@bayfor.org

Weitere Informationen:

http://www.exahype.eu
http://www.bayfor.org
http://www.bayfor.org/de-exahype
http://www.hausderforschung.bayern.de

Anita Schneider | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mit Künstlicher Intelligenz zu besseren Entscheidungen
30.03.2020 | Universität Bielefeld

nachricht Künstliche Intelligenz findet das optimale Werkstoffrezept
26.03.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

31.03.2020 | Medizin Gesundheit

Jade Hochschule entwickelt Messverfahren zur Prüfung von Schweißnähten unter Wasser

31.03.2020 | Verfahrenstechnologie

Phagen-Kapsid gegen Influenza: Passgenauer Inhibitor verhindert virale Infektion

31.03.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics