Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer KI-Algorithmus - Künstliche Intelligenz auf Schrödingers Spuren

18.11.2019

Gemeinsame Presseinformation der Universität Warwick, der Universität Luxemburg und der Technischen Universität Berlin

Künstliche Intelligenz (KI) und Algorithmen für maschinelles Lernen werden heute routinemäßig verwendet, um unser Kaufverhalten vorherzusagen, Reiserouten vorzuschlagen oder Bilder und Gesichter zu erkennen.


In der Forschung etabliert sich KI gerade als ein entscheidendes Instrument zur Unterstützung von wissenschaftlichen Entdeckungen. So wird KI in der Chemie immer häufiger eingesetzt, um die Ergebnisse von Experimenten oder Simulationen vorherzusagen. Um dies zu erreichen, muss KI in der Lage sein, die grundlegenden Gesetze der Physik systematisch mit einzubeziehen.

Ein interdisziplinäres Team von Wissenschaftlern der Universität Warwick, der TU Berlin und der Universität Luxemburg hat jetzt einen KI-Algorithmus entwickelt, der es unter anderem erlaubt, anhand der gewünschten chemischen Eigenschaften einer Substanz, die dafür notwendige Struktur zu bestimmen.

Eine Fähigkeit, die besonders bei der Entwicklung von neuartigen Medikamenten und Materialien eine wichtige Rolle spielen könnte.

Der von den Chemikern, Physikern und Informatikern entwickelte Algorithmus ist in der Lage, die Quantenzustände eines Moleküls, die sogenannte Wellenfunktion, die alle Eigenschaften dieses Moleküls bestimmen, zu berechnen.

Dazu musste die KI lernen, grundlegende Gesetze der Physik zu verinnerlichen und Gleichungen der Quantenmechanik - wie zum Beispiel die Schrödingergleichung - zu lösen. Die Arbeit „Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunction” wurde jetzt in Nature Communications veröffentlicht.

Das Lösen dieser und ähnlicher Gleichungen auf herkömmliche Weise erfordert enorme Rechnerkapazitäten und vor allem auch Monate an Rechnerzeit. „Genau hier liegt normalerweise der Engpass bei der rechnergestützten Entwicklung neuer, speziell für medizinische und industrielle Anwendungen entwickelter Moleküle“, so Prof. Dr. Klaus-Robert Müller, Professor für maschinelles Lernen an der TU Berlin.

Der neu entwickelte Algorithmus kann dagegen auf einem Laptop oder Mobiltelefon innerhalb von Sekunden genaue Vorhersagen liefern.

„Die Veröffentlichung ist das Ergebnis einer dreijährigen gemeinsamen Anstrengung und erforderte Informatik-Know-how, um einen Algorithmus zu entwickeln, der flexibel genug ist, um die Form und das Verhalten von Wellenfunktionen zu erfassen, aber auch Chemie- und Physik-Know-how, um quantenchemische Daten zu verarbeiten und dazustellen“, so Dr. Reinhard Maurer vom Fachbereich Chemie der Universität Warwick.

Klaus-Robert Müller ergänzt: „Diese interdisziplinäre Arbeit ist ein wichtiger Fortschritt, denn sie zeigt, dass KI-Methoden die schwierigsten Aspekte der quantenchemischen Simulation erlernen können. Dazu gehört auch das sogenannte inverse Design, das besonders für die Medikamentenherstellung ein langjähriger Traum der Pharmakologie und der Chemie ist.“

Von inversem Design spricht man, wenn man eine bestimmte chemische Eigenschaft eines Moleküls vorgibt und aus diesen Vorgaben die entsprechende molekulare Struktur entwirft und optimiert. Das interdisziplinäre Team geht davon aus, dass sich KI-Methoden zukünftig weiter als wesentlicher Bestandteil in der Computerchemie und der Molekularphysik etablieren werden und auch nachhaltig das inverse molekulare Design ermöglichen werden.

„Diese Arbeit ermöglicht eine neue Ebene des Wirkstoffdesigns, bei der sowohl die elektronischen als auch die strukturellen Eigenschaften eines Moleküls zusammengeführt werden können, um die gewünschten Anwendungskriterien zu erreichen“, so Professor Dr. Alexandre Tkatchenko vom Fachbereich Physik der Universität Luxemburg.

Publikation:
„Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunction” https://www.nature.com/articles/s41467-019-12875-2

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Klaus-Robert Müller
TU Berlin
Fachgebiet Maschinelles Lernen
Tel.: 030 314-78620
E-Mail: klaus-robert.mueller@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer
19.02.2020 | Universität Stuttgart

nachricht Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter
19.02.2020 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics