Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Streaming-Methode verändert die Spielewelt

02.12.2019

TU Graz-Forscher Dieter Schmalstieg entwickelte ein Verfahren, das die Vorzüge von Cloud Computing und Virtual Reality kombiniert. Damit können Videospiele zukünftig auch auf günstigen und kabellosen VR-Brillen in hoher Qualität dargestellt werden.

Streamingdienste wie Netflix oder Amazon Prime sind längst Normalität. Nun hält die nächste digitale Technologie Einzug in die Unterhaltungsindustrie: Cloud Gaming.


Dieter Schmalstieg ist seit 2004 Professor am Institut für Maschinelles Sehen und Darstellen und einer der erfolgreichsten Erfinder an der TU Graz.

© Schmalstieg

Die Technik gleicht jener von Videodiensten. Das Computerspiel läuft auf einem Server des Cloud-Anbieters. Die Spielenden greifen per Internet auf das Programm zu und bekommen Bild und Ton auf jedes beliebige Endgerät geschickt.

Voraussetzung ist dabei nicht mehr so sehr die neueste Hardware, sondern eine schnelle Internetverbindung, die die großen Datenmengen von den Rechenzentren zu den Spielgeräten transportiert – möglichst verzögerungsfrei und damit ohne nerviges Ruckeln.

Cloud Computing soll außerdem Virtual Reality-Spiele auf eine neue Stufe heben. Hier stellt der Datenaustausch eine noch größere Herausforderung dar. Die „flüssige“ Darstellung von Sequenzen auf Virtual-Reality-Brillen benötigt eine bis zu zehnmal höhere Rechenleistung als konventionelle Videospiele, da mehr Pixel und mehr Bilder pro Sekunden dargestellt werden müssen.

Die traditionelle Videoübertragung stößt hier rasch an ihre Grenzen. Dieter Schmalstieg vom Institut für Maschinelles Sehen und Darstellen hat mit seinem Team nun ein neues Verfahren entwickelt, das der kabellosen VR-Technologie zum endgültigen Durchbruch in der Spieleindustrie verhelfen kann.

Neues Verfahren verbessert die Latenz drastisch

Das sogenannte „Shading Atlas Streaming“ erlaubt es, die nötige Übertragungsrate deutlich zu senken. „Vereinfacht ausgedrückt streamen wir mit unserem System keine Videos, sondern geometrisch codierte Informationen, die von der VR-Brille decodiert und in ein Bild übersetzt werden“, erklärt Schmalstieg die Technologie.

Die Latenz – also die Verzögerungszeit, die bei der Signalübertragung, beim Zwischenspeichern von Daten oder beim Prüfen von Datenpaketen entsteht – wird mit dem System nicht vermieden, sondern quasi ausgeglichen.

„Latenz vollständig zu vermeiden ist unmöglich. Unsere Art der Codierung erlaubt es aber, innerhalb eines kleinen Zeitfensters in die Zukunft korrekte Bilder vorherzusagen. So können wir die Latenzzeit ausgleichen, die wahrgenommene Latenz ist damit nahezu Null“, so Schmalstieg.

Konkret werden mithilfe des Shading Atlas Streaming die Pixelfehler in der Darstellung auf ein paar wenige Prozent reduziert, sodass sie nicht als störend wahrgenommen werden.

Effiziente Nutzung vorhandener Hardware

Für die praktische Anwendung ist es wichtig, die neue Technik in bestehende Infrastruktur integrieren zu können. Daher verwenden die Forscher das herkömmliche MPEG-Kompressionsverfahren zum Transport der Daten. Die notwendige Leistung für das Decodieren der 3D-Information ist in VR-Brillen bereits vorhanden. Es ist also keine neue Hardware nötig, um Shading Atlas Streaming nutzen zu können.

Shading Atlas Streaming ist überall dort einsetzbar, wo 3D-Daten anfallen und VR-Brillen zum Einsatz kommen. Mit dem Chiphersteller Qualcomm als Partner wird bereits an einer kommerziellen Umsetzung der Forschungsergebnisse gearbeitet.

Dieter Schmalstieg ist ein Forschungspionier in den Bereichen Augmented Reality und Virtual Reality. Als erfolgreichster Erfinder der TU Graz erhielt er 2017 die Nikola-Tesla-Medaille. 2019 wurde er mit dem Forschungspreis des Landes Steiermark ausgezeichnet.

Dieses Forschungsprojekt ist im FoE „Information, Communication & Computing“ verankert, einem von fünf Stärkefeldern der TU Graz.

Wissenschaftliche Ansprechpartner:

Dieter SCHMALSTIEG
Univ.-Prof. Dipl.-Ing. Dr.techn.
Institut für Maschinelles Sehen und Darstellen
Inffeldgasse 16/II
8010 Graz
schmalstieg@tugraz.at

Weitere Informationen:

https://www.youtube.com/watch?v=ZW8MOwpOwI8 (Erklär-Video zu Shading Atlas Streaming)

https://www.tugraz.at/institute/icg/research/team-steinberger/research-projects/... (Detailseite zum Projekt)

https://www.tugraz.at/institutes/icg/home/ (Website des Instituts für Maschinelles Sehen und Darstellen der TU Graz)

https://www.tugraz.at/tu-graz/services/news-stories/planet-research/einzelansich... (Interview mit D. Schmalstieg)

Mag. Christoph Pelzl, MSc | Technische Universität Graz

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase
11.12.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Sensoraufkleber überwacht Lebensmittelproduktion
11.12.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden

11.12.2019 | Ökologie Umwelt- Naturschutz

Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase

11.12.2019 | Informationstechnologie

Verbesserte Architekturgläser durch Plasmabehandlung – Reinigung, Vorbehandlung & Haftungssteigerung

11.12.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics