Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nach Meltdown und Spectre: TU Graz-Forscher entdecken neue Sicherheitslücken

15.05.2019

ZombieLoad und Store-to-Leak Forwarding rütteln an der Sicherheit von Computerprozessoren der Firma Intel. Die im vergangenen Jahr entwickelten Patches helfen nicht – neue Updates und Sicherheitslösungen sind notwendig.

ZombieLoad und Store-to-Leak Forwarding heißen die neuen Angriffsmethoden, die die TU Graz-Sicherheitsforscher Daniel Gruss, Moritz Lipp und Michael Schwarz vom Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie der TU Graz gemeinsam mit einem internationalen Team gerade veröffentlicht haben. Die drei Informatiker waren bereits im vergangenen Jahr gemeinsam mit TU Graz-Professor Stefan Mangard an der Entdeckung der gravierenden Sicherheitslücken Meltdown und Spectre beteiligt.


Michael Schwarz, Daniel Gruss und Moritz Lipp waren bereits 2018 gemeinsam mit TU Graz-Professor Stefan Mangard an der Entdeckung von Meltdown und Spectre beteiligt

© Lunghammer – TU Graz

ZOMBIELOAD

ZombieLoad nutzt einen ähnlichen Ansatz wie Meltdown. Um schneller arbeiten zu können, bereiten Computersysteme mehrere Arbeitsschritte parallel vor und verwerfen dann jene wieder, die entweder nicht gebraucht werden oder für die es keine notwendigen Zugriffsrechte gibt. Aufgrund der Bauweise von Prozessoren muss dieser immer Daten weitergeben, auch wenn diese nicht die richtigen sind.

Der Check der Zugriffsrechte passiert aber erst, wenn bereits sensible Rechenschritte vorausgearbeitet wurden, die auf Annahmen des Computersystems beruhen. „In diesem kurzen Moment zwischen Befehl und Check können wir mit der neuen Attacke die bereits geladenen Daten von anderen Programmen sehen“, erklärt Gruss. So können die Forschenden im Klartext mitlesen, was gerade am Computer gemacht wird.

Für Meltdown gab es mit dem vom TU Graz-Team entwickelten KAISER-Patch eine einfache Lösung, die die Geschwindigkeit des Computers beeinträchtigte. Für ZombieLoad-Angriffe könnte sich eine Lösung schwieriger gestalten, wie Gruss erklärt: „Jede CPU hat mehrere Kerne und jeder Kern ist noch einmal geteilt. So können mehrere Programme gleichzeitig laufen. Wir glauben, dass einer dieser zwei Bereiche gelöscht werden muss.“

Das würde Leistungseinbußen von 50 Prozent bedeuten. Oder in einer Cloud, die von der Angriffsmethode ebenfalls bedroht ist, 50 Prozent weniger mögliche Nutzerinnen und Nutzer auf der gleichen Hardware. Betroffen sind alle von Intel entwickelten Prozessoren, die zwischen 2012 und Anfang 2018 hergestellt wurden.
Weiterführende Infos: https://zombieload.com/zombieload.pdf

STORE-TO-LEAK FORWARDING

Auch beim Store-to-Leak Forwarding wird die optimierte Arbeitsweise von Computerprozessoren ausgenutzt und vorab geladene Daten ausgelesen. „Der Computer geht davon aus, dass ich Daten, die ich gerade in den Prozessor geschrieben habe, auch gleich wieder weiterverwenden möchte. Also behält er sie im Buffer, um schneller darauf zugreifen zu können“, erklärt Gruss. Diese Arbeitsweise kann wiederrum ausgenutzt werden, um die Architektur des Computerprozessors auszuforschen und den genauen Ort zu finden, an dem das Betriebssystem ausgeführt wird. „Wenn ich weiß, wo genau das Betriebssystem vom Prozessor ausgeführt wird, dann kann ich gezielt Angriffe auf Lücken im Betriebssystem starten.“
Weiterführende Infos: https://cpu.fail/store-to-leak.pdf

NEUE UPDATES DRINGEND NOTWENDIG

Die Entdeckungen meldeten die Forschenden sofort an den Hersteller Intel, der seither an einer Lösung arbeitet. „Alle Computer-Nutzerinnen und -Nutzer sollten dringend alle neuen Updates einspielen, damit die Computersysteme wieder sicher sind“, empfiehlt Gruss.

Die Forschung wurde über das ERC-Projekt Sophia, das Projekt DESSNET und das Projekt ESPRESSO sowie aus einer Spende vom Hersteller Intel finanziert.

Forschungspartner:
Daniel Gruss, Moritz Lipp, Michael Schwarz, Claudio Canella und Lukas Giner – alle TU Graz
Daniel Moghimi, Worcester Polytechnic Institute
Jo Van Bulck, imec-DistriNet, KU Lueven
Julian Stecklina, Cyberus Technology
Thomas Prescher, Cyberus Technology

Diese Forschung ist im FoE „Information, Communication & Computing“ verankert, einem der fünf Stärkefelder der TU Graz. Sie wurde über das ERC-Projekt Sophia, das Projekt DESSNET und das Projekt ESPRESSO sowie aus einer Spende vom Hersteller Intel finanziert.

Wissenschaftliche Ansprechpartner:

TU Graz
Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie
Inffeldgasse 16a, 8010 Graz

Daniel GRUSS
Ass.Prof. Dipl.-Ing. Dr.techn. BSc
Tel.: +43 316 873 5544
Email: daniel.gruss@iaik.tugraz.at

Moritz LIPP
Dipl.-Ing. BSc
Tel.: +43 316 873 5563
Email: moritz.lipp@.iaik.tugraz.at

Michael SCHWARZ
Dipl.-Ing. BSc
Tel.: +43 316 873 5537
Email: michael.schwarz@.iaik.tugraz.at

Originalpublikation:

ZombieLoad: https://zombieload.com/zombieload.pdf
Store-to-Leak Forwarding: https://cpu.fail/store-to-leak.pdf

Weitere Informationen:

https://www.tugraz.at/tu-graz/services/news-stories/medienservice/einzelansicht/...
https://www.tugraz.at/tu-graz/services/news-stories/planet-research/einzelansich...
https://www.tugraz.at/forschung/forschungsschwerpunkte-5-fields-of-expertise/inf...

Mag. Christoph Pelzl | Technische Universität Graz

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg
10.07.2020 | Technische Universität Bergakademie Freiberg

nachricht Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie
10.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics