Mit ungenauen Chips zum künstlichen Gehirn

Juniorprofessorin Dr. Elisabetta Chicca arbeitet an der Entwicklung von künstlichen Nervensystemen. Foto: CITEC/Universität Bielefeld Foto: CITEC/Universität Bielefeld

Welche Schaltkreise und Chips eignen sich für den Bau von künstlichen Gehirnen und verbrauchen dabei möglichst wenig Strom?

Das hat Juniorprofessorin Dr. Elisabetta Chicca vom Exzellenzcluster Kognitive Interaktionstechnologie (CITEC) der Universität Bielefeld zusammen mit Kollegen aus Italien und der Schweiz untersucht. Eine überraschende Erkenntnis: Für den Bau von künstlichen Nervensystemen sind Konstruktionen besonders geeignet, die außer digitalen Schaltkreisen auch analoge kompakte und ungenaue Schaltkreise nutzen.

Solche Konstruktionen eignen sich besser als Anordnungen mit nur digitalen Schaltkreisen oder präzisen analogen Chips, die dafür aber stromhungrig sind. Die Studie wird in dem Magazin „Proceedings of the IEEE“ veröffentlicht. Eine Vorabversion wurde jetzt online gestellt.

Elisabetta Chicca leitet die Forschungsgruppe „Neuromorphic Behaving Systems“ (Neuromorphe Verhaltenssysteme). Zu den Zielen ihrer Arbeit gehört es, Roboter und andere technische Systeme möglichst selbstständig und lernfähig zu machen. Ihr Vorbild für die Entwicklung von künstlichen Gehirnen sind die biologischen Nervensysteme von Menschen und Tieren.

„Umweltreize werden in biologischen Nervensystemen von Menschen und Tieren ganz anders verarbeitet als in modernen Computern“, sagt Chicca. „Biologische Nervensysteme organisieren sich selbst, sie passen sich an und sie lernen. Dabei verbrauchen sie im Vergleich zu Computern sehr wenig Energie und ermöglichen komplexe Fähigkeiten wie Entscheidungsfindung, die Erkennung von Assoziationen und von Mustern.“

Die Neuroinformatikerin versucht, biologische Prinzipien für den Bau von künstlichen Nervensystemen nutzbar zu machen. So haben sie und ihre Kollegen für die jetzt veröffentlichte Studie untersucht, mit welchen Schaltkreisen sich Synapsen elektronisch nachbilden lassen.

Synapsen dienen als „Brücken“ zur Übertragung von Signalen zwischen Nervenzellen. Außerdem hat das Forschungsteam analysiert, mit welchen Schaltkreisen sich die so genannte Plastizität der biologischen Nerven imitieren lässt. Plastizität beschreibt die Fähigkeit von Nervenzellen, Synapsen und Hirnarealen ihre Eigenschaften je nach Verwendung anzupassen. So sind bei Sportlern bestimmte Hirnareale stärker vernetzt als bei Nicht-Sportlern.

Auch Lösungen für die Steuerung eines künstlichen Nervensystems stellen die vier Forscherinnen und Forscher vor. Sie präsentieren eine Software, auf deren Grundlage sich Programme schreiben lassen, um die Schaltkreise und Chips eines „Elektronenhirns“ zu steuern.

Für ihre Studie kooperierte Elisabetta Chicca mit ihren Kollegen Chiara Bartolozzi PhD (Italian Institute of Technology – IIT), Professor Dr. Giacomo Indiveri und Fabio Stefanini PhD (beide Institut für Neuroinformatik der Universität Zürich und Eidgenössische Technische Hochschule Zürich, Schweiz).

Originalveröffentlichung:
Elisabetta Chicca, Fabio Stefanini, Chiara Bartolozzi, Giacomo Indiveri: Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems. Proceedings of the IEEE, http://dx.doi.org/10.1109/JPROC.2014.2313954, online erschienen am 1. Mai 2014.

Kontakt:
Jun.-Prof. Dr. Elisabetta Chicca, Universität Bielefeld
Exzellenzcluster Kognitive Interaktionstechnologie (CITEC)
Telefonkontakt über die CITEC-Geschäftsstelle: 0521 106-6562
E-Mail: chicca@cit-ec.uni-bielefeld.de

http://dx.doi.org/10.1109/JPROC.2014.2313954
http://www.nbs.cit-ec.uni-bielefeld.de

Media Contact

Jörg Heeren idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer