Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messbare Sicherheit bei der Datenübertragung

13.01.2020

Neue Forschungsgruppe „FastPhoton“ an der Friedrich-Schiller-Universität Jena, der TU Ilmenau und dem Fraunhofer Institut für Angewandte Optik und Feinmechanik in Jena widmet sich der Quantenkommunikation

Egal ob an der Supermarktkasse, beim Online-Banking oder auch beim Austausch von Informationen zwischen staatlichen Institutionen – die Übertragung sensibler Daten per Internet setzt immer ein bestimmtes Maß an Vertrauen voraus.


Prototyp einer Einzelphotonenquelle in zweidimensionalem Bornitrid für Quantenkommunikations-Anwendungen unter Weltraum-Bedingungen.

Foto: Jürgen Scheere


Dr. Tobias Vogl (links) und Dr. Falk Eilenberger von der Forschungsgruppe "FastPhoton" am Abbe Center of Photonics der Friedrich-Schiller-Universität Jena.

Foto: Jürgen Scheere

Denn sämtlichen Verschlüsselungssystemen liegen mathematische Prinzipien zugrunde und können mit entsprechender Rechenleistung theoretisch auch geknackt werden.

Deshalb entwickeln Wissenschaftler der Friedrich-Schiller-Universität Jena gemeinsam mit Kollegen der Technischen Universität Ilmenau und des Fraunhofer Instituts für Angewandte Optik und Feinmechanik in Jena Methoden, die auf physikalischen Grundsätzen basieren und somit weitaus sicherere Alternativen bieten.

Unterstützt werden sie dabei von der Thüringer Aufbaubank, welche die Forschergruppe „Ultrabreitbandige Hochfrequenz-Ansteuerung fasergekoppelter Laserdioden für polarisations- und zeitstempel-kodierte Einzelphotonen in der Quantenkommunikation“ (kurz: FastPhoton) seit dem 1. Januar für die kommenden zweieinhalb Jahre mit insgesamt 650.000 Euro finanziert.

Das Projekt, geleitet von Prof. Dr. Andreas Tünnermann von der Universität Jena, ist am Thüringer Innovationszentrum „InQuoSens“ angesiedelt, an dem Forscher beider Thüringer Universitäten elektronische und nanophotonische Lösungen für Quantenlichtquellen entwickeln – denn genau diese benötigen die neuen Verschlüsselungssysteme.

Informationsübertragung durch einzelne Photonen

Aktuell werden Daten häufig über Glasfaserkabel mit Licht übertragen. Dabei verwendet man für jedes Bit eine enorme Menge Photonen, da die Teilchen so gut detektiert und verstärkt werden können.

„Gelänge es aber, die Informationen in einzelnen Photonen zu übermitteln, dann kommen die Quanteneigenschaften der Teilchen zum Tragen, die rein physikalische Verschlüsselungsmethoden ermöglichen“, sagt Dr. Falk Eilenberger von der Universität Jena, der an der Forschergruppe beteiligt ist.

„Sicherheitstechnisch bedeutet das eine enorme qualitative Verbesserung. Denn ein Photon lässt sich nur genau einmal vermessen und ist somit nur für genau einen Empfänger lesbar – ein Zugriff von außen wäre nicht möglich beziehungsweise bliebe nicht unentdeckt. Sogar der Betreiber der Infrastruktur kann keine Daten herausziehen. So wird Sicherheit messbar.“

Die physikalischen Prinzipien für ein solches Vorgehen sind bereits seit einigen Jahrzehnten bekannt und bewiesen. Nun gilt es, konkrete potentielle Anwendungen unter die Lupe zu nehmen. Elementar hierfür sind geeignete Einzelphotonenquellen, die die notwendigen Photonen mit präzise definierten Eigenschaften produzieren. Auf deren Entwicklung, Verbesserung und Integration wollen sich die Wissenschaftler im Rahmen der Forschergruppe besonders konzentrieren.

Klein und robust

„Für Quantenkommunikation über sehr lange, interkontinentale Distanzen müssen die Lichtquellen auf Satelliten im All zum Einsatz kommen. Daher brauchen wir miniaturisierte Systeme, die auch unter extremen Bedingungen und nicht nur in einer sterilen Laborumgebung funktionieren“, informiert Eilenbergers Kollege Dr. Christian Helgert. „Optisch sind wir hierbei auf einem guten Weg – erste wenige Zentimeter große Einzelphotonenquellen, die auf 2D-Materialien basieren, haben wir bereits entwickelt.“

Der Fokus liege nun vor allem auf der elektronischen Integration solcher Systeme, um sie auch kosteneffizient gestalten zu können. „Die Kooperation zwischen Jena und Ilmenau ist hierfür ideal, denn wir haben die Expertise im opto-elektronischen Bereich – die Kollegen von der TU sind spezialisiert auf Hochleistungselektronik in rauer Umgebung“, sagt Eilenberger.

Trotz der erheblichen Fortschritte auf dem Gebiet der Quantenkommunikation gehen die Jenaer Experten davon aus, dass es noch einige Jahre dauern wird, bis Endnutzer Informationen auf diese Art und Weise austauschen. Dann aber könnten solche Systeme, die auf Einzelphotonen basieren, als sichere Alternative bei der Übertragung hochsensibler Daten zum Einsatz kommen.

Wissenschaftliche Ansprechpartner:

Dr. Falk Eilenberger
Abbe Center of Photonics & Institut für Angewandte Physik der Universität Jena
Albert-Einstein-Straße 6, 07745 Jena
Tel.: 03641/947990
E-Mail: falk.eilenberger@uni-jena.de

Sebastian Hollstein | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mit Mixed Reality Maschinen überwachen
21.01.2020 | Fachhochschule St. Pölten

nachricht IT-Bootcamps: Programmieren lernen in nur drei Monaten
21.01.2020 | Neue Fische GmbH - Julia Fischer

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Differenzierte Bildgebung für bessere Diagnosen bei Brustkrebs

21.01.2020 | Medizin Gesundheit

Kurilen-Kamchatka-Graben im Pazifischen Ozean gehört nicht mehr zu den „10.000ern“

21.01.2020 | Geowissenschaften

Proteinfunktionen - Ein Lichtblitz genügt

21.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics