Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein mathematisches 3D-Puzzle

18.05.2011
Wie strömt die Luft um ein Flugzeug? Wie fließt das Blut durch das Herz?

Um solche räumlichen Prozesse untersuchen zu können, simulieren Forscher sie mit dem Computer und benutzen dafür mathematische Modelle. Das Software-Programm TetGen des Weierstraß-Instituts zerlegt räumliche Gebilde in eine Vielzahl von Tetraedern, auf denen die Prozesse mit Hilfe einfacher Funktionen approximiert werden können.


Ein Flugzeug und seine Umgebung wird in Tetraeder zerlegt, um die Strömungen simulieren zu können. Grafik: WIAS


Tetraedergitter einer Rattenlunge für Strömungssimulationen. Grafik: WIAS

Einen realen Prozess genau zu verstehen oder gar vorhersagen zu können ist schwierig, weil er sehr komplex sein kann. Ein mathematisches Modell beschränkt sich daher auf die wichtigsten Aspekte. Soll zum Beispiel der Blutstrom durch das Herz simuliert werden, ist es für den Computer mit seinem endlichen Speicherplatz nicht möglich, für die unendlich vielen Punkte im Innern des Herzens jeweils einen eigenen Funktionswert zu berechnen. Das Modell ist dann zwar gröber als die Realität, dafür ist es handhabbar und gibt die wesentlichen Aspekte wieder.

Die bisherigen Methoden, mit denen sich räumliche Gebilde in geeignete Teilstücke zerlegen lassen, sind stark von Heuristiken beeinflusst, in diesem Sinne mathematisch nicht bewiesen und daher nicht in allen Fällen robust. Daher haben nun die Mathematiker des Weierstraß-Instituts das Software-Programm TetGen entwickelt. Es zerlegt den Raum in Tetraeder, und zwar auf der Grundlage eines mathematisch weitgehend bewiesenen Verfahrens. Auf jedem Tetraeder wird anschließend der reale Prozess mit einer einfachen Funktion angenähert.

„Das ist, als ob ein Kind mit Bauklötzen spielt“, erläutert Dr. Jürgen Fuhrmann. „Wir versuchen, ein räumliches Gebilde komplett mit Tetraedern auszufüllen, ohne dass es Überschneidungen oder Lücken gibt.“ Was so einfach klingt, ist allerdings sehr komplex. Zunächst muss die gekrümmte Begrenzungsfläche, also zum Beispiel die Herzwand, durch ein Gitter aus Dreiecken angenähert werden.

Um den Raum in Tetraeder zu zerlegen, ist es meistens nötig, neue Ecken im Innern oder auf dem Rand hinzuzufügen. Es gibt bisher noch keine Theorie, mit der sich für einen vorgegebenen Körper die Mindestzahl von Tetraedern für eine Zerlegung angeben lässt. Daher kann TetGen nicht die eine optimale Lösung generieren – falls es sie denn gibt – sondern die Mathematiker arbeiten an immer besseren Ergebnissen.

Die erste Version von TetGen hat Dr. Hang Si 2001 veröffentlicht – in seiner Masterarbeit an der Zhejiang-Universität in China. Im WIAS waren die Wissenschaftler von dem Konzept überzeugt und wollten es gern weiterentwickeln. Also boten sie Hang Si eine Stelle an. Seit 2002 entwickelt der chinesische Wissenschaftler nun die Software und mathematischen Grundlagen für die dahinterliegenden Algorithmen weiter. Diese Resultate bildeten die Grundlage seiner Promotion, die er an der TU Berlin verteidigen konnte.

„Wir haben das Programm immer weiter verbessert, so dass es jetzt auch kompliziertere Körper zerlegen kann.“, erläutert Hang Si. „Es gibt noch viele interessante geometrische Probleme, die gelöst werden müssen, um den Algorithmus verbessern zu können. Ein Beispiel ist die Frage, wie man ein nichtkonvexes Polyeder in eine möglichst optimale Anzahl von Tetraedern zerlegen kann“.

Wichtig ist, dass das Programm frei verfügbar für wissenschaftliche Zwecke ist. So wird es laufend weltweit von Forschern intensiv getestet, und die WIAS-Mathematiker haben viele Hinweise für Verbesserungsmöglichkeiten erhalten. „In TetGen stecken acht Jahre Forschung und das Feedback vieler hochkompetenter Tester“, so Si. Mehrere Firmen haben Lizenzen für die kommerzielle Nutzung von TetGen erworben. So ist es inzwischen in das Programmpaket Mathematica integriert, eines der meistbenutzten mathematisch-naturwissenschaftlichen Programmpakete. Im Rahmen eines gemeinsamen Forschungsprojektes wird es zum Beispiel für die 3D-Darstellung von Städten in den Niederlanden verwendet.

„Es gibt aber noch immer Verbesserungsbedarf“, sagt Hang Si. „TetGen kann noch nicht Gitter aus flachen Tetraedern mit Vorzugsrichtungen generieren, wie sie zum Beispiel für die Darstellung von Strömungen in der Nähe des Randes benötigt werden.“ Daher wird er auch weiter daran arbeiten, das Programm zu verbessern.

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.wias-berlin.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer
19.02.2020 | Universität Stuttgart

nachricht Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter
19.02.2020 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics