Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018

Wissenschaftler entwickeln neue maschinelle Lernmethode, die Roboter sicherer machen kann. Methode ermöglicht einfachere und intuitivere Modelle von physikalischen Situationen

Um den sicheren Betrieb eines Roboters zu gewährleisten ist es entscheidend zu wissen, wie der Roboter unter verschiedenen Bedingungen reagiert. Aber woher soll man wissen, was einen Roboter stört, ohne ihn tatsächlich zu beschädigen?


Ein Roboter muss seinen Körper und die Umwelt kennenlernen. Er macht Testbewegungen und verwendet den Algorithmus um vorherzusagen, was bei größeren Bewegungen und höheren Geschwindigkeiten passiert.

IST Austria/Birgit Rieger

Eine neue Methode, die Wissenschaftler des Institute of Science and Technology Austria (IST Austria) und des Max-Planck-Instituts für Intelligente Systeme entwickelten, ist die erste Methode für maschinelles Lernen, welche Beobachtungen, die unter sicheren Bedingungen getroffen wurden, nutzt, um genaue Vorhersagen für alle möglichen Bedingungen zu treffen, die von der gleichen physikalischen Dynamik bestimmt werden.

Die Methode ist speziell für reale Situationen entwickelt und bietet einfache, interpretierbare Beschreibungen der zugrundeliegenden Physik. Die Forscher stellen morgen ihre Ergebnisse auf der diesjährigen renommierten International Conference for Machine Learning (ICML) vor.

In der Vergangenheit konnte maschinelles Lernen Daten nur interpolieren – also Vorhersagen treffen über eine Situation, die „zwischen“ anderen, bekannten Situationen liegt. Maschinelles Lernen konnte nicht extrapolieren – das heißt es konnte keine Vorhersagen treffen über Situationen die außerhalb der bekannten Situationen liegen, da es nur lernt, bekannte Daten lokal so genau wie möglich zu modellieren.

Das Sammeln von genügend Daten für effektive Interpolation ist außerdem zeit- und ressourcenintensiv, und erfordert Daten aus extremen oder gefährlichen Situationen. Georg Martius, ehemaliger Postdoc des IST Austria und ISTFELLOW und seit 2017 Gruppenleiter am MPI für Intelligente Systeme in Tübingen, Subham S. Sahoo, ein PhD Student am MPI für Intelligente Systeme, und Christoph Lampert, Professor am IST Austria, entwickelten nun eine neue maschinelle Lernmethode, die diese Probleme anspricht. Es ist die erste maschinelle Lernmethode, die präzise für unbekannte Situationen extrapoliert.

Das Besondere der neuen Methode ist, dass sie versucht, die wahre Dynamik der Situation herauszufinden: Gegeben der Daten liefert sie Gleichungen, die die zugrundeliegende Physik beschreiben. „Wenn man diese Gleichungen kennt“, sagt Georg Martius, „dann kann man sagen, was in allen Situationen passieren wird, auch, wenn man sie nicht gesehen hat.“ Das ist, was es der Methode ermöglicht, zuverlässig zu extrapolieren, und sie so einzigartig unter maschinellen Lernmethoden macht.

Die Methode des Teams ist in mehrfacher Hinsicht einzigartig. Erstens waren die Lösungen, die maschinelles Lernen zuvor erstellte, viel zu komplex, als dass ein Mensch sie verstehen könnte. Die Gleichungen, die aus der neuen Methode resultieren, sind viel einfacher: „Die Gleichungen unserer Methode sind etwas, was man in einem Lehrbuch sehen würde – einfach und intuitiv“, sagt Christoph Lampert.

Letzteres ist ein weiterer Vorteil: Andere maschinelle Lernmethoden geben keinen Einblick in den Zusammenhang zwischen Eingaben und Ergebnissen – und damit auch keine Einsicht darüber, ob das Modell überhaupt plausibel ist. „In allen anderen Forschungsbereichen erwarten wir Modelle, die physikalisch Sinn machen, und die uns sagen, warum“, ergänzt Lampert.

„Das sollten wir auch vom maschinellen Lernen erwarten und das ist, was unsere Methode bietet.“ Deshalb basierte das Team seine Lernmethode auf einer einfacheren Architektur als übliche Methoden, um die Interpretierbarkeit zu gewährleisten und sie für physikalische Situationen zu optimieren. In der Praxis bedeutet das, dass weniger Daten benötigt werden, um die gleichen oder sogar bessere Ergebnisse zu erzielen.

Und es ist nicht alles Theorie: „In meiner Gruppe arbeiten wir an der Entwicklung eines Roboters, der diese Art des Lernens nutzt. In Zukunft würde der Roboter mit verschiedenen Bewegungen experimentieren und dann in der Lage sein, die Gleichungen herauszufinden, die seinen Körper und seine Bewegung beschreiben, so dass er gefährliche Aktionen oder Situationen vermeiden kann“, fügt Martius hinzu. Während hauptsächlich an der Roboteranwendung geforscht wird, kann die Methode mit jeder Art von Daten, von biologischen Systemen bis hin zu Röntgenübergangsenergien, eingesetzt werden und auch in größere maschinelle Lernnetzwerke integriert werden.

Über das IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz. www.ist.ac.at

Über das MPI-IS
Das Max-Planck-Institut für Intelligente Systeme hat sich zum Ziel gesetzt, die Prinzipien von Wahrnehmen, Handeln und Lernen in autonomen Systemen zu verstehen. Aus diesem Verständnis heraus wollen die Wissenschaftler künstliche intelligente Systeme entwickeln. An seinen zwei Standorten in Stuttgart und Tübingen verbindet das Institut Spitzenforschung in Theorie, Software und Hardware.
Der Standort in Stuttgart beherbergt führende Expertise in den Bereichen Mikro- und Nano-Robotik, Haptik, Mensch-Maschine-Interaktion, bio-hybride Systeme sowie Medizinrobotik. Am Standort Tübingen wird mittels Forschung in den Bereichen Maschinelles Lernen, Maschinelles Sehen und Robotik untersucht, wie intelligente Systeme Informationen verarbeiten, um wahrnehmen, handeln und lernen zu können.

Für dieses Projekt wurden im Rahmen der Marie-Skłodowska-Curie-Finanzhilfevereinbarung Nr. 291734 Fördermittel aus dem Programm der Europäischen Union für Forschung und Innovation „Horizont 2020“ bereitgestellt.
Die Forschung wurde aus dem ISTFELLOW-Programm, einem Marie Skłodowska-Curie COFUND Förderung, das von IST Austria und der Europäischen Union im Rahmen des Forschungs- und Innovationsprogramms „Horizont 2020“ kofinanziert wird, gefördert. Dieses Programm wurde inzwischen durch ein weiteres COFUND Förderung, das ISTplus-Programm, abgelöst, das für Bewerbungen von qualifizierten Postdocs aus aller Welt offen ist.

Wissenschaftliche Ansprechpartner:

Georg Martius: gmartius@tuebingen.mpg.de
Christoph Lampert: chl@ist.ac.at

Originalpublikation:

S. S. Sahoo, C. H. Lampert, and G. Martius: "Learning equations for extrapolation and control" In Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 2018. PMLR, 2018.
http://proceedings.mlr.press/v80/sahoo18a.html
Arxiv Preprint: https://arxiv.org/abs/1806.07259

Weitere Informationen:

https://icml.cc/ Link zur Konferenz
http://cvml.ist.ac.at/ Webseite der Forschungsgruppe um Prof. Lampert

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Gegen das Verblassen historischer Dokumente
11.07.2018 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

nachricht Erfolgreicher Projektabschluss 5G-CHARISMA: Neue Netzarchitekturen für Mobilfunknetz 5G entwickelt
11.07.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

Farbe im Design – The Value of Color

10.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Risikofaktor für Darmkrebs entschlüsselt

13.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics