Lichtquelle für schnellere Chips

Kohlenstoff-Nanoröhre über einem photonischen Kristall-Wellenleiter mit Elektroden. Die Struktur wandelt elektrische Signale in Licht. Foto: WWU

Im Großen ist die Nachrichtenübertragung durch Licht längst Alltag: Glasfaserkabel als Lichtwellenleiter übertragen zum Beispiel Telefon- und Internetsignale. Auf dem Weg, die Vorteile von Licht, also Geschwindigkeit und Energieeffizienz, künftig auch im Kleinen, auf der Ebene von Computerchips, nutzen zu können, sind Forscher am KIT dank Grundlagenforschung einen wichtigen Schritt zur Anwendung vorangekommen. Durch die Einbindung winziger Kohlenstoffröhrchen in einen nanostrukturierten Wellenleiter haben sie ein kompaktes miniaturisiertes Schaltteil entwickelt, das elektrische Signale in klar definierte optische Signale wandelt.

„Die Nanostrukturen wirken wie ein photonischer Kristall und erlauben es die Eigenschaften des Lichtes aus dem Röhrchen maßzuschneidern“, erklären Felix Pyatkov und Valentin Fütterling, die Erstautoren der Studie, die am Institut für Nanotechnologie des KIT forschen. „So können wir sehr schmalbandiges Licht in der gewünschten Farbe auf dem Chip erzeugen.“

In welcher Wellenlänge das Licht weitergeleitet wird, ist durch die Bearbeitung des Wellenleiters präzise definiert: Durch die Gravur mit Hilfe der Elektronenstrahl-Lithografie erhält der einige Mikrometer lange Wellenleiter feinste Hohlräume von einigen Nanometern Größe, die seine optischen Eigenschaften bestimmen. Der so entstandene photonische Kristall reflektiert das Licht in bestimmten Farben, ein Phänomen, das in der Natur auf bunt erscheinenden Schmetterlingsflügeln beobachtet werden kann.

Als neuartige Lichtquellen werden Kohlenstoffnanoröhrchen von rund einem Mikrometer Länge und einem Nanometer Durchmesser quer zum Wellenleiter auf Metallkontakte positioniert. Am KIT wurde ein Prozess entwickelt, mit dem es möglich ist, die Nanoröhrchen gezielt in hochgradig komplexe Strukturen zu integrieren.

Dabei nutzten die Forscher das Verfahren der Dielektrophorese, um zu erreichen, dass sich die im Durchmesser etwa einen Nanometer – ein millionstel Millimeter – großen Kohlenstoffröhrchen aus einer Lösung abscheiden und senkrecht zum Wellenleiter anordnen. Diese ursprünglich aus der Biologie stammende Möglichkeit zur Separation von Partikeln mithilfe inhomogener elektrischer Felder eignet sich gut, um nanoskalige Objekte auf Trägermaterialien abzulegen. Die direkt in den Wellenleiter eingebrachten Kohlenstoff-Nanoröhrchen fungieren als winzige Lichtquelle, da sie Photonen erzeugen, wenn elektrische Spannung angelegt wird.

Der nun vorgestellte kompakte Strom-Licht-Signalwandler erfüllt Anforderungen für die nächste Generation von Computern, die elektronische Komponenten mit nanophotonischen Wellenleitern verbinden. Der Signalwandler bündelt das Licht fast so stark wie ein Laser und spricht mit hoher Geschwindigkeit auf variable Signale an. Bereits jetzt lassen sich mithilfe der von den Forschern entwickelten opto-elektronischen Bauelemente aus elektrischen Signalen Lichtsignale im Giga-Hertz-Frequenzbereich erzeugen.

An dem Forschungsprojekt waren Ralph Krupke, der am Institut für Nanotechnologie des KIT und am Institut für Materialwissenschaft der TU Darmstadt forscht, Wolfram H.P. Pernice, der vor einem Jahr vom KIT an die Westfälische Wilhelms-Universität Münster wechselte, und Manfred M. Kappes, Institut für Physikalische Chemie und Institut für Nanotechnologie des KIT, federführend beteiligt. Gefördert wurde es durch das Programm Science and Technology of Nanosystems (STN) der Helmholtz-Gemeinschaft, dessen Ziel es ist, Nanosysteme mit einzigartiger Funktionalität zur erforschen und das Potenzial von Materialien mit Strukturgrößen von wenigen Nanometern zu erschließen. Die Volkswagenstiftung finanzierte für das Forschungsprojekt eine Doktorandenstelle, darüber hinaus unterstützte die Hightech-Plattform Karlsruhe Nano Micro Facility (KNMF) das Vorhaben.

Felix Pyatkov, Valentin Fütterling, Svetlana Khasminskaya, Benjamin Flavel, Frank Hennrich, Manfred M. Kappes, Ralph Krupke & Wolfram H.P. Pernice: Cavity enhanced light emission from electrically driven carbon nanotubes. Nature Photonics, DOI: 10.1038/NPHOTON.2016.70

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Weitere Informationen:

http://www.kit.edu

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer