Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtquelle für schnellere Chips

19.04.2016

Weltweit wachsende Datenmengen lassen die herkömmliche elektronische Verarbeitung an ihre Grenzen stoßen. Die Informationstechnologie der Zukunft setzt deshalb auf Licht als Medium für schnelle Datenübermittlung auch innerhalb von Computerchips. Forscher unter Federführung des KIT haben nun gezeigt, dass sich winzige Röhrchen aus Kohlenstoff als On-Chip-Lichtquelle für die Informationstechnologie von morgen eignen, wenn man nanostrukturierte Wellenleiter nutzt, um passende Lichteigenschaften zu erhalten. Ihre Ergebnisse stellen die Wissenschaftler in Nature Photonics jetzt vor. DOI: 10.1038/NPHOTON. 2016.70

Im Großen ist die Nachrichtenübertragung durch Licht längst Alltag: Glasfaserkabel als Lichtwellenleiter übertragen zum Beispiel Telefon- und Internetsignale. Auf dem Weg, die Vorteile von Licht, also Geschwindigkeit und Energieeffizienz, künftig auch im Kleinen, auf der Ebene von Computerchips, nutzen zu können, sind Forscher am KIT dank Grundlagenforschung einen wichtigen Schritt zur Anwendung vorangekommen. Durch die Einbindung winziger Kohlenstoffröhrchen in einen nanostrukturierten Wellenleiter haben sie ein kompaktes miniaturisiertes Schaltteil entwickelt, das elektrische Signale in klar definierte optische Signale wandelt.


Kohlenstoff-Nanoröhre über einem photonischen Kristall-Wellenleiter mit Elektroden. Die Struktur wandelt elektrische Signale in Licht.

Foto: WWU

„Die Nanostrukturen wirken wie ein photonischer Kristall und erlauben es die Eigenschaften des Lichtes aus dem Röhrchen maßzuschneidern“, erklären Felix Pyatkov und Valentin Fütterling, die Erstautoren der Studie, die am Institut für Nanotechnologie des KIT forschen. „So können wir sehr schmalbandiges Licht in der gewünschten Farbe auf dem Chip erzeugen.“

In welcher Wellenlänge das Licht weitergeleitet wird, ist durch die Bearbeitung des Wellenleiters präzise definiert: Durch die Gravur mit Hilfe der Elektronenstrahl-Lithografie erhält der einige Mikrometer lange Wellenleiter feinste Hohlräume von einigen Nanometern Größe, die seine optischen Eigenschaften bestimmen. Der so entstandene photonische Kristall reflektiert das Licht in bestimmten Farben, ein Phänomen, das in der Natur auf bunt erscheinenden Schmetterlingsflügeln beobachtet werden kann.

Als neuartige Lichtquellen werden Kohlenstoffnanoröhrchen von rund einem Mikrometer Länge und einem Nanometer Durchmesser quer zum Wellenleiter auf Metallkontakte positioniert. Am KIT wurde ein Prozess entwickelt, mit dem es möglich ist, die Nanoröhrchen gezielt in hochgradig komplexe Strukturen zu integrieren.

Dabei nutzten die Forscher das Verfahren der Dielektrophorese, um zu erreichen, dass sich die im Durchmesser etwa einen Nanometer - ein millionstel Millimeter - großen Kohlenstoffröhrchen aus einer Lösung abscheiden und senkrecht zum Wellenleiter anordnen. Diese ursprünglich aus der Biologie stammende Möglichkeit zur Separation von Partikeln mithilfe inhomogener elektrischer Felder eignet sich gut, um nanoskalige Objekte auf Trägermaterialien abzulegen. Die direkt in den Wellenleiter eingebrachten Kohlenstoff-Nanoröhrchen fungieren als winzige Lichtquelle, da sie Photonen erzeugen, wenn elektrische Spannung angelegt wird.

Der nun vorgestellte kompakte Strom-Licht-Signalwandler erfüllt Anforderungen für die nächste Generation von Computern, die elektronische Komponenten mit nanophotonischen Wellenleitern verbinden. Der Signalwandler bündelt das Licht fast so stark wie ein Laser und spricht mit hoher Geschwindigkeit auf variable Signale an. Bereits jetzt lassen sich mithilfe der von den Forschern entwickelten opto-elektronischen Bauelemente aus elektrischen Signalen Lichtsignale im Giga-Hertz-Frequenzbereich erzeugen.

An dem Forschungsprojekt waren Ralph Krupke, der am Institut für Nanotechnologie des KIT und am Institut für Materialwissenschaft der TU Darmstadt forscht, Wolfram H.P. Pernice, der vor einem Jahr vom KIT an die Westfälische Wilhelms-Universität Münster wechselte, und Manfred M. Kappes, Institut für Physikalische Chemie und Institut für Nanotechnologie des KIT, federführend beteiligt. Gefördert wurde es durch das Programm Science and Technology of Nanosystems (STN) der Helmholtz-Gemeinschaft, dessen Ziel es ist, Nanosysteme mit einzigartiger Funktionalität zur erforschen und das Potenzial von Materialien mit Strukturgrößen von wenigen Nanometern zu erschließen. Die Volkswagenstiftung finanzierte für das Forschungsprojekt eine Doktorandenstelle, darüber hinaus unterstützte die Hightech-Plattform Karlsruhe Nano Micro Facility (KNMF) das Vorhaben.

Felix Pyatkov, Valentin Fütterling, Svetlana Khasminskaya, Benjamin Flavel, Frank Hennrich, Manfred M. Kappes, Ralph Krupke & Wolfram H.P. Pernice: Cavity enhanced light emission from electrically driven carbon nanotubes. Nature Photonics, DOI: 10.1038/NPHOTON.2016.70

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Software beschleunigt Textilentwicklung - Computermodell berechnet Wärmeverteilung unter Kleidung
22.11.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Ein superschneller «Lichtschalter» für künftige Autos und Computer
18.11.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

Nicht nur in Muskelzellen spielen sie die Hauptrolle: Die Aktinfilamente sind eines der häufigsten Proteine in allen Säugetierzellen. Die fadenförmigen Strukturen bilden einen wichtigen Teil des Zellskeletts und -bewegungsapparats. Zellbiologinnen und -biologen der Universität Freiburg zeigen nun in Zellkulturen, wie Rezeptorproteine in der Membran dieser Zellen Signale von außen an Aktinmoleküle im Kern weiterleiten, die daraufhin Fäden bilden.

Das Team um Pharmakologe Prof. Dr. Robert Grosse steuert in einer Studie den Auf- und Abbau der Aktinfilamente im Zellkern mit physiologischen Botenstoffen und...

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Gewinner ist… Vorankündigung zum 11. Corporate Health Award

22.11.2019 | Förderungen Preise

Erste Liga der Automobilzulieferer

22.11.2019 | Förderungen Preise

Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

22.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics