Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lesen von magnetischen Skyrmionen leichtgemacht

06.10.2015

Neuer physikalischer Effekt: Forscher entdecken elektrische Widerstandsänderung durch magnetische Wirbelstrukturen

Derzeit werden kleinste magnetische Wirbel – sogenannte Skyrmionen – als vielversprechende Kandidaten für Bits in zukünftigen robusten und kompakten Datenspeichern diskutiert. Solche exotischen magnetischen Strukturen konnten in den letzten Jahren an der Universität Hamburg in ultradünnen magnetischen Schichten und Multilagensystemen nachgewiesen werden, wie sie bereits heute in Schreib-Lese-Köpfen von Festplatten und in magnetischen Sensoren genutzt werden.


Abbildung: Magnetische Wirbel mit einem Durchmesser von nur wenigen Nanometern treten in einem dünnen Film aus Palladium und Eisen auf (unten, die Kegel repräsentieren einzelne Atome der Oberfläche und ihre Spitzen zeigen in die Richtung der atomaren Stabmagnete). Der Widerstand, gemessen mit einer metallischen Sonde direkt oberhalb der Oberfläche, ändert sich im Skyrmion verglichen mit der Umgebung (oben, experimentelle Daten entlang einer Schnittlinie durch ein Skyrmion, siehe Originalveröffentlichung). Die Widerstandsänderung erfolgt kontinuierlich, und hat den größten Wert, wenn die Verkippung zwischen benachbarten atomaren Stabmagneten am stärksten ist, in diesem Fall im Zentrum des Skyrmions.

(Bild: C. Hanneken, Universität Hamburg)

Zum Auslesen von Skyrmionen war allerdings bislang ein weiterer Magnet notwendig. Jetzt haben Forscher der Universität Hamburg und der Christian-Albrechts-Universität zu Kiel gezeigt, dass man Skyrmionen prinzipiell viel einfacher nachweisen kann, da sich in den magnetischen Wirbelstrukturen der elektrische Widerstand drastisch ändert. Für zukünftige Datenspeicherkonzepte verspricht dies eine enorme Vereinfachung in der Herstellung und Anwendung.

Stabile Wirbel in magnetischen Materialien (siehe Abbildung) sind bereits vor über 25 Jahren vorhergesagt worden, konnten aber erst vor wenigen Jahren experimentell nachgewiesen werden. Die Entdeckung solcher Skyrmionen in dünnen magnetischen Schichten und Multilagen, welche heutzutage in vielen technologischen Anwendungen bereits genutzt werden, und die Möglichkeit, diese Skyrmionen bereits mit geringen elektrischen Stromdichten zu bewegen, hat die Perspektive eröffnet, sie als Bits in neuartigen Datenspeichern zu verwenden.

Bislang wurden einzelne magnetische Wirbel entweder durch Elektronen-Mikroskopie oder durch Messung der Widerstandsänderung in einem Tunnelkontakt mit einer magnetischen Sonde nachgewiesen. Wissenschaftler der Universität Hamburg konnten nun mit Hilfe eines Rastertunnelmikroskops demonstrieren, dass sich der Widerstand auch dann ändert, wenn man bei der Messung ein nicht-magnetisches Metall verwendet.

„In unserem Experiment können wir eine metallische Spitze mit atomarer Präzision über eine Oberfläche bewegen, und so den Widerstand eines Skyrmions an unterschiedlichen Positionen vermessen“, so Christian Hanneken, Doktorand in der Arbeitsgruppe von Prof. Roland Wiesendanger. Dadurch kann die ortsabhängige Widerstandsänderung im magnetischen Wirbel nachgewiesen werden. „Die beobachtete Widerstandsänderung kann bis zu 100 % betragen und erlaubt damit eine einfache Detektion von Skyrmionen“, wie Dr. Kirsten von Bergmann erläutert.

Zusammen mit theoretischen Physikern der Universität Kiel konnten die Forscher erklären, dass die Widerstandsänderung im magnetischen Wirbel aufgrund der Verkippung der atomaren Stabmagnete von einem Atom zum nächsten zustande kommt (siehe Abbildung). Je größer der Winkel zwischen den benachbarten Stabmagneten ist, desto stärker ändert sich der elektrische Widerstand. „Elektronen besitzen einen Spin, wodurch sie mit der magnetischen Struktur wechselwirken“, so Prof. Stefan Heinze von der Universität Kiel.

Wenn die Elektronen sich durch den magnetischen Wirbel bewegen, spüren sie die Verkippung zwischen den atomaren Stabmagneten, wodurch sich der Widerstand des Materials lokal ändert. „Diesen Effekt konnten wir mittels aufwendiger numerischer Computersimulationen der elektronischen Eigenschaften verstehen und ein einfaches Modell für die Widerstandsänderung entwickeln“, wie der Doktorand Fabian Otte erläutert.

In zukünftigen Anwendungen könnte dieser neu entdeckte Effekt genutzt werden, um die Skyrmionenbits auf einfache Weise auszulesen. Die Möglichkeit, beliebige metallische Elektroden verwenden zu können, erleichtert dabei die Herstellung und den Betrieb der neuartigen Speicherelemente erheblich.


Originalveröffentlichung:
Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance,
Christian Hanneken, Fabian Otte, André Kubetzka, Bertrand Dupé, Niklas Romming, Kirsten von Bergmann, Roland Wiesendanger und Stefan Heinze, Nature Nanotechnology, Online-Veröffentlichung vom 05.10.2015,
DOI: 10.1038/nnano.2015.218.

Weitere Informationen:
Dr. Kirsten von Bergmann
Universität Hamburg
Jungiusstr. 11A
20355 Hamburg
E-Mail: kbergman@physnet.uni-hamburg.de
Tel.: (0 40) 4 28 38 - 62 95

Weitere Informationen:

http://www.nanoscience.de
http://www.sfb668.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Tausend Mal schneller als Flash-Speicher: Schnelles Speichermaterial im Neutronenlicht
07.12.2018 | Technische Universität München

nachricht Drei Komponenten auf einem Chip
06.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Großes Interesse an erster Fachtagung

07.12.2018 | Veranstaltungen

Entwicklung eines Amphibienflugzeugs

04.12.2018 | Veranstaltungen

Neue biologische Verfahren im Trink- und Grundwassermanagement

04.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erstmalig in Deutschland: Erfolgreiche Bestrahlungstherapie lebensbedrohlicher Herzrhythmusstörung

07.12.2018 | Medizintechnik

Nicht zu warm und nicht zu kalt! Seminar „Thermomanagement von Lithium-Ionen-Batterien“ am 02.04.2019 in Aachen

07.12.2018 | Seminare Workshops

Seminar „Magnettechnik - Magnetwerkstoffe“ vom 19. – 20.02.2019 in Essen

07.12.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics