Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Intelligenz erforscht dunkle Materie im Universum

18.09.2019

Ein Team aus Physikern und Informatikern der ETH Zürich hat einen neuen Zugang zum Problem der dunklen Materie und dunklen Energie im Universum entwickelt. Mit Hilfsmitteln des maschinellen Lernens programmierten sie Computer so, dass diese sich selbst beibrachten, relevante Informationen aus Himmelskarten zu gewinnen.

Herauszufinden, wie unser Universum zu dem wurde, was es heute ist, und welches Schicksal es dereinst erwartet, ist eine der grössten Herausforderungen der Wissenschaft. Das Ehrfurcht einflössende Schauspiel ungezählter Sterne in einer klaren Nacht gibt uns eine Ahnung von der Tragweite des Problems, und doch ist das nur ein Teil der Geschichte.


Eine typische computergenerierte Massenkarte der dunklen Materie, wie sie von den Forschen zum Trainieren des neuronalen Netzwerks benutzt wird.

ETH Zürich

Das grössere Rätsel besteht in dem, was wir nicht sehen können, zumindest nicht direkt: dunkle Materie und dunkle Energie. Da dunkle Materie das Universum zusammenhält und dunkle Energie es sich ausbreiten lässt, müssen Kosmologen genau wissen, wieviel der beiden Arten es da draussen gibt, um ihre Modelle zu verfeinern.

An der ETH Zürich haben sich nun Wissenschaftler des Departements Physik und des Departements Informatik zusammengetan, um mit Hilfe von künstlicher Intelligenz die Standardmethoden zur Schätzung des Gehalts an dunkler Materie im Universum zu verbessern.

Sie verwendeten dazu innovative Algorithmen für maschinelles Lernen, welche viel mit denen gemeinsam haben, die von Facebook und anderen sozialen Medien für die Gesichtserkennung benutzt werden. Ihre Ergebnisse wurden kürzlich im Fachjournal Physical Review D [http://dx.doi.org/10.1103/PhysRevD.100.063514] veröffentlicht.

Gesichtserkennung für die Kosmologie

In Aufnahmen des Nachthimmels gibt es zwar keine Gesichter zu erkennen, doch Kosmologen suchen nach etwas ganz Ähnlichem, wie Thomas Kacprzak erklärt, der als Forscher in der Gruppe von Alexandre Refregier am Institut für Teilchenphysik und Astrophysik arbeitet: «Facebook benutzt seine Algorithmen, um in Bildern Augen, Münder oder Ohren zu finden; wir benutzten unsere, um nach den charakteristischen Anzeichen von dunkler Materie und dunkler Energie zu suchen.»

Da dunkle Materie nicht direkt in Teleskopaufnahmen sichtbar ist, vertrauen Physiker darauf, dass alle Materie – auch die dunkle Sorte – die Bahnen von Lichtstrahlen, die von fernen Galaxien auf der Erde ankommen, leicht verbiegen.

Dieser Mechanismus, bekannt als «schwacher Gravitationslinseneffekt», verzerrt die Bilder der Galaxien auf subtile Weise, ganz ähnlich wie weit entfernte Objekte verschwommen aussehen, wenn das Licht an einem heissen Tag Luftschichten mit verschiedenen Temperaturen durchquert.

Kosmologen können diese Verzerrung ausnutzen und rückwärts rechnen, um so Massenkarten zu erstellen, die zeigen, wo sich dunkle Materie befindet. Anschliessend vergleichen sie diese Massenkarten der dunklen Materie mit theoretischen Vorhersagen, um dasjenige kosmologische Modell zu finden, das am besten mit den Daten übereinstimmt.

Normalerweise werden dazu von Menschen entwickelte statistische Grössen wie etwa sogenannte Korrelationsfunktionen verwendet, die beschreiben, wie verschiedene Teile der Massenkarten miteinander in Bezug stehen. Solche Grössen sind allerdings nur bedingt nützlich, wenn es darum geht, komplexe Muster in den Massenkarten zu finden.

Neuronale Netzwerke lernen von allein

«In unserer neuesten Arbeit haben wir eine völlig neue Methode benutzt», sagt Alexandre Refregier. «Anstatt selbst eine geeignete statistische Analyse zu erfinden, überlassen wir diese Arbeit den Computern.» Hier nun kommen Aurélien Lucchi und seine Kollegen vom Data Analytics Lab am Departement für Informatik ins Spiel.

Gemeinsam mit Janis Fluri, Doktorand in Refregiers Gruppe und Erstautor der Studie, verwendeten sie als tiefe künstliche neuronale Netzwerke bekannte Algorithmen für maschinelles Lernen und brachten ihnen bei, so viele Informationen wie möglich aus den Massenkarten der dunklen Materie herauszuholen.

In einem ersten Schritt trainierten die Wissenschaftler die neuronalen Netzwerke, indem sie sie mit computergenerierten Daten fütterten, die das Universum simulieren. Auf diese Weise kannten sie im Voraus die richtige Antwort für einen bestimmten kosmologischen Parameter – zum Beispiel das Verhältnis der gesamten dunklen Materie zur dunklen Energie – für jede der simulierten Massenkarten.

Durch wiederholte Analyse der Massenkarten brachte das neuronale Netzwerk sich selbst bei, darin nach den richtigen Strukturen zu suchen und mehr und mehr der gewünschten Informationen zu extrahieren. Im Facebook-Vergleich wurde es also immer besser darin, zufällige ovale Formen von Augen oder Mündern zu unterscheiden.

Genauer als menschengemachte Analyse

Die Ergebnisse dieses Trainings waren ermutigend: Die neuronalen Netzwerke fanden Werte, die um 30 Prozent genauer waren als diejenigen, die mit herkömmlichen, auf menschengemachter Statistik basierenden Methoden erzielt wurden. Für Kosmologen ist das eine enorme Verbesserung, denn um dieselbe Genauigkeit durch mehr Teleskopaufnahmen zu erreichen, würde man die doppelte Beobachtungszeit brauchen – und die ist teuer.

Schliesslich benutzten die Wissenschaftler ihr durchtrainiertes neuronales Netzwerk, um echte Massenkarten der dunklen Materie des KiDS-450 Datensatzes zu untersuchen.

«Das ist das erste Mal, das solche Werkzeuge des maschinellen Lernens in diesem Zusammenhang verwendet wurden», sagt Fluri, «und wir haben gesehen, dass das tiefe künstliche neuronale Netzwerk es uns erlaubt, mehr Informationen aus den Daten zu gewinnen als mit bisherigen Methoden. Wir glauben, dass diese Verwendung von maschinellem Lernen in der Zukunft noch viele Anwendungen haben wird.»

Als nächsten Schritt haben er und seine Kollegen vor, ihre Methode auf grössere Datensätze wie den Dark Energy Survey anzuwenden. Zudem sollen mehr kosmologische Parameter und weitere Verfeinerungen, wie etwa Details zum Wesen der dunklen Energie, in die neuronalen Netzwerke eingespeist werden.

Originalpublikation:

Fluri J, Kacprzak T, Lucchi A, Refregier A, Amara A, Hofmann T, Schneider A: Cosmological constraints with deep learning from KiDS-450 weak lensing maps. Physical Review D. 100: 063514, doi: 10.1103/PhysRevD.100.063514 [http://dx.doi.org/10.1103/PhysRevD.100.063514]

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2019/09/kuenstliche-in...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Magnetische Kristallschichten für den Computer von Morgen
03.06.2020 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase
28.05.2020 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleines Protein, große Wirkung

In Meningokokken spielt das unscheinbare Protein ProQ eine tragende Rolle. Zusammen mit RNA-Molekülen reguliert es Prozesse, die für die krankmachenden Eigenschaften der Bakterien von Bedeutung sind.

Meningokokken sind Bakterien, die lebensbedrohliche Hirnhautentzündungen und Sepsis auslösen können. Diese Krankheitserreger besitzen ein sehr kleines Protein,...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Alternativer Zement - Rezeptur für Öko-Beton

04.06.2020 | Architektur Bauwesen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungsnachrichten

Unschuldig und stark oxidierend

04.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics