Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Intelligenz: Ein Auto parken mit zwölf Neuronen

22.10.2018

An der TU Wien nahm man sich beim Programmieren künstlicher Intelligenz natürliche Nervenbahnen zum Vorbild. Die neuen Ansätze erzielen mit wenig Aufwand verblüffende Leistungen.

Ein natürlich gewachsenes Gehirn funktioniert ganz anders als ein gewöhnliches Computerprogramm. Es besteht nicht aus Befehlen mit klaren logischen Anweisungen, sondern aus einem Netz von Zellen, die miteinander kommunizieren. Man kann heute aber solche Netze auch am Computer nachbilden um Probleme zu lösen, die sich nur schwer in logische Befehle zerlegen lassen.


Ein Auto wird in die Parklücke gesteuert - von einem winzigen neuronalen Netz

TU Wien


Ramin Hasani

TU Wien

An der TU Wien hat man nun einen neuen Ansatz für die Programmierung solcher neuronaler Netze entwickelt, der die zeitliche Entwicklung der Nervensignale völlig anders beschreibt als bisher. Inspirieren ließ man sich dabei von einem besonders einfachen und gut erforschten Lebewesen, dem Fadenwurm C. elegans.

Sein Gehirn wurde am Computer simuliert, das Modell wurde dann mit speziell entwickelten Lernalgorithmen angepasst. So gelang es, mit einer extrem niedrigen Zahl simulierter Nervenzellen bemerkenswerte Aufgaben zu lösen.

Obwohl das vom Wurm inspirierte Netzwerk nur über 12 Neuronen verfügt, kann man es darauf trainieren, ein Auto an einen vorherbestimmten Ort zu manövrieren. Ramin Hasani von Institut für Computer Engineering der TU Wien hat diese Arbeit nun am 20. Oktober bei der TEDx-Konferenz in Wien präsentiert.

Mathematisch lässt sich zeigen, dass diese neuartigen neuronalen Netze extrem vielseitig sind. Außerdem lässt sich ihr Verhalten gut untersuchen und verstehen – im Gegensatz zu bisherigen neuronalen Netzen, die man oft als nützliche aber undurchschaubare „Black Box“ betrachtete.

Signale in verzweigten Netzen

„Neuronale Netze müssen zuerst trainiert werden“, erklärt Ramin Hasani. „Man liefert einen bestimmten Input und passt die Verbindungen zwischen den Neuronen so an, dass am Ende möglichst zuverlässig der richtige Output geliefert wird.“

Der Input kann beispielsweise ein Bild sein – und der Output der Name der Person, die darauf zu sehen ist. „Die Zeit spielt bei diesem Vorgang normalerweise keine Rolle“, sagt Radu Grosu (Institut für Computer Engineering, TU Wien). „Bei den meisten neuronalen Netzen wird zu einem bestimmten Zeitpunkt der gesamte Input geliefert und daraus ergibt sich sofort ein bestimmter Output. In der Natur ist das aber ganz anders.“

Spracherkennung etwa ist eine zwangsläufig zeitabhängige Aufgabe, genauso wie Simultanübersetzungen oder Bewegungsabläufe, die auf eine wechselnde Umwelt reagieren. „Solche Aufgaben können viel besser gelöst werden, wenn man sogenannte RNN verwendet – recurrent neural networks“, sagt Ramin Hasani. „Das ist eine Architektur, die Zeitabläufe besser abbildet, weil sie dafür sorgt, dass sich die Nervenzellen merken, was bisher passiert ist.“

Hasani und seine Kollegen schlugen eine neuartige RNN-Architektur vor, die auf biophysikalischen Modellen von Neuronen und Synapsen beruht und zeitabhängige Dynamik erlaubt. „In einem gewöhnlichen RNN-Modell gibt es eine unveränderliche Verbindung zwischen Neuron eins und Neuron zwei, die festlegt, wie stark das eine Neron die Aktivität des anderen beeinflusst“, erklärt Ramin Hasani. „In unserem neuartigen RNN ist diese Verbindung eine nichtlineare Funktion der Zeit.“

Indem man zulässt, dass sich die Zellaktivität und die Verbindungen zwischen den Zellen mit der Zeit verändern, eröffnet man völlig neue Möglichkeiten. Ramini Hasani, Mathias Lechner und ihre Kollegen konnten mathematisch zeigen, dass sich mit dieser Methode im Prinzip neuronale Netze mit beliebiger Dynamik erzeugen lassen.

Um die Vielseitigkeit des neuen Typs neuronaler Netze zu demonstrieren, entwickelten und trainierten sie ein spezielles kleines Neuro-Netzwerk: „Wir bildeten das Nervensystem nach, das der Fadenwurm C. elegans verwendet, um einen ganz einfachen Reflex zu realisieren – nämlich das Rückzugsverhalten bei einer Berührung“, sagt Mathias Lechner (derzeit am Institute of Science and Technology Austria). „Das neuronale Netz wurde stimuliert und trainiert, um reale Aufgaben zu lösen.“

Der Erfolg ist erstaunlich: Obwohl es sich um ein kleines, einfaches Netz mit nur 12 Nervenzellen handelt, kann es (nach der entsprechenden Optimierung der Nervenverbindungen) bemerkenswert komplexe Aufgaben lösen. Das Netz kann trainiert werden, ein Fahrzeug in eine Parklücke zu manövrieren.

„Der Output des neuronalen Netzes, der in der Natur die Bewegung des Fadenwurms steuern würde, wird bei uns in das Lenken und Beschleunigen des Fahrzeugs umgesetzt“, sagt Hasani. „Wir beweisen damit, dass mit unserer Methode sehr einfache neuronale Netze komplizierte Aufgaben in einer physisch realen Umgebung lösen können.“

Zusätzlich hat die neue Methode den Vorteil, dass sie einen besseren Einblick in die Funktionsweise des neuronalen Netzes bietet: Während man bei bisherigen neuronalen Netzen, die oft aus vielen tausend Knotenpunkten bestanden, nur das Ergebnis analysieren kann und die Abläufe im Inneren unüberschaubar komplex sind, lässt sich beim kleineren aber leistungsfähigen Netz der TU Wien zumindest teilweise verstehen, welche Nervenzellen welche Effekte hervorrufen. „Für die Forschung und die weitere Verbesserung des Konzeptes ist das ein großer Vorteil“, sagt Hasani.

Das bedeutet freilich nicht, dass Autos in Zukunft von künstlichen Würmern eingeparkt werden – aber es zeigt, dass künstliche Intelligenz mit der richtigen Architektur deutlich leistungsfähiger sein kann als bisher gedacht.

Wissenschaftliche Ansprechpartner:

Dott. Mag. Ramin Hasani
Institut für Computer Engineering
Technische Universität Wien
Treitlstraße 3, 1040 Wien
T: +43-1-58801-18228
ramin.hasani@tuwien.ac.at

Weitere Informationen:

https://www.youtube.com/watch?v=Vwydc2ez9Wc

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Intelligente Lösungen für smarte Container
13.11.2019 | Julius-Maximilians-Universität Würzburg

nachricht KI, mein Freund und Helfer – Studie zu den Implikationen der Interaktion mit Künstlicher Intelligenz
12.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Veränderungen der Chiralität von Molekülen in Echtzeit beobachten

Chirale Moleküle – Verbindungen, die als Bild und Spiegelbild vorkommen – spielen eine wichtige Rolle in biologischen Prozessen und in der chemischen Synthese. Chemikern der ETH Zürich ist es nun erstmals gelungen, mit Hilfe von Ultrakurzzeit-Laserpulsen Änderungen der Chiralität während einer chemischen Reaktion in Echtzeit zu beobachten.

Manche Moleküle können in zwei spiegelbildlichen Formen existieren, ähnlich wie unsere Hände. Obwohl solche sogenannten Enantiomere fast identische...

Im Focus: Durchbruch in der Malariaforschung

Eine internationale Forschungsgruppe um den Zellbiologen Volker Heussler von der Universität Bern hat hunderte genetische Schwachstellen des Malaria-Parasiten Plasmodium identifiziert. Diese sind in der Medikamenten- und Impfstoffentwicklung dringend erforderlich, um die Krankheit dereinst ausrotten zu können.

Trotz grosser Anstrengungen in Medizin und Wissenschaft, sterben weltweit immer noch mehr als 400'000 Menschen an Malaria. Die Infektionskrankheit wird durch...

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Im Focus: Neue Möglichkeiten des Additive Manufacturing erschlossen

Fraunhofer IFAM Dresden demonstriert Fertigung von Kupferbau

Am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden ist es gelungen, mittels Selektivem Elektronenstrahlschmelzen...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

Kopfsprung aus 80 km Höhe

15.11.2019 | Veranstaltungen

4. Innovation and Networking Days: Smart City, Energie und intelligente Prozesse

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Effiziente Elektromotoren für neue Mobilitätskonzepte durch druckgegossene Aluminiumspulen

15.11.2019 | Energie und Elektrotechnik

Weltrekord-Material macht aus Wärme Elektrizität

15.11.2019 | Materialwissenschaften

Veränderungen der Chiralität von Molekülen in Echtzeit beobachten

15.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics