Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kolob: Erster Grafikkarten-basierender Rechencluster an der Universität Heidelberg

04.11.2008
Mit einer theoretischen Gesamtleistung von rund 17 Billiarden Rechenoperationen pro Sekunde befindet sich Kolob unter den schnellsten 150 Rechnern der Welt

Am Institut für Technische Informatik der Universität Heidelberg (ZITI) ist seit September 2008 Kolob, der erste Grafikkarten-basierende Rechencluster der Ruprecht-Karls-Universität, in Betrieb.

Grafikkarten (= GPU: Graphics Processing Unit) bieten im Vergleich zu herkömmlichen Prozessoren, wie sie in PCs verwendet werden, eine enorme Leistungssteigerung für parallelisierbare Rechenaufgaben. Eine einzige GPU kann bis zu 128 Rechenoperationen gleichzeitig durchführen. Ursprünglich wurden solch leistungsfähige GPUs zur Beschleunigung der Grafik bei Computerspielen entwickelt.

Mittlerweile finden sie aber immer mehr Einsatz im wissenschaftlichen Bereich, wo höchste Rechenleistungen erforderlich sind. Mit einer theoretischen Gesamtleistung von rund 17 Billiarden Rechenoperationen pro Sekunde befindet sich Kolob unter den schnellsten 150 Rechnern der Welt.

Der Kolob-Rechencluster ist ein Gemeinschaftsprojekt des Zentrums für Astronomie (Institut für Theoretische Astrophysik und Astronomisches Rechen-Institut) und des ZITI. Die Astronomie-Institute werden auf dem GPU-Cluster ihre numerischen Simulationen für die Forschung an der Entstehung von Sternen und der dynamischen Entwicklung von Sternhaufen durchführen. Mit Hilfe des neuen GPU-Clusters erwarten sich die Forschergruppen eine erhebliche Beschleunigung dieser Rechnungen. Vor allem die Berechnung der Gravitationskraft, die dominierende Kraft in astrophysikalischen Prozessen, kann auf den GPUs sehr viel effizienter durchgeführt werden.

Der Durchbruch für den Einsatz von GPUs für numerische Simulationen kam durch die Entwicklung einer allgemein zugänglichen Programmier-Schnittstelle des Graphikkartenherstellers Nvidia. Zuvor wurden astrophysikalische Berechnungen auf teuerer, selbstentwickelter Hardware, sog. GRAPE-Karten, durchgeführt. Die neue GPU-Technologie wird diese Nischenentwicklung in Zukunft ablösen.

Im Bereich von numerischen Simulationen ist die GPU-Technologie noch in einer relativ frühen Entwicklungsphase. Deshalb werden die Wissenschaftler des ZITI und der astronomischen Institute verstärkt in Entwicklungen investieren, die eine breite Nutzbarmachung dieser günstigen Variante von Supercomputern ermöglichen.

Technische Info zu Kolob:
40x2 Xeon Quadcore 2.33 GHz, GFLOPS: 37.28 each: total: 2.98 TFLOPS
40x Tesla C870 128 floating point processor cores, GFLOPS 350 (peak 512), total 14 TFLOPS, total cores (incl. GPUs): 5440., 17 TFLOPS
Rückfragen bitte an:
Dr. Robi Banerjee
Institut für Theoretische Astrophysik
am Zentrum für Astronomie der
Universität Heidelberg
Albert-Ueberle-Str. 2
69120 Heidelberg
Tel. 06221 548967, Fax 544221
banerjee@ita.uni-heidelberg.de
Allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de
Irene Thewalt
Tel. 06221 542310, Fax 542317
presse@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de/presse
http://www.ita.uni-heidelberg.de/~banerjee

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg
10.07.2020 | Technische Universität Bergakademie Freiberg

nachricht Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie
10.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics