Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kieler und Bochumer Forschende entwickeln neuartigen Informationsspeicher

12.10.2015

Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU) und der Ruhr Universität Bochum (RUB) haben einen neuartigen Informationsspeicher entwickelt, der Ionen zur Speicherung und Elektronen zum Auslesen von Daten nutzt. Speicherzellen könnten damit bis in atomare Dimensionen verkleinert werden. Das ist aber nicht der einzige Vorteil der neuen Technologie, berichten die Forschenden im Fachmagazin Scientific Reports.

„Sechs plus sieben sind drei – plus eins im Sinn“, rechnet Professor Hermann Kohlstedt, Leiter der Gruppe Nanoelektronik an der Universität Kiel, vor. Damit beschreibt er, dass selbst bei einfachsten Rechenoperationen die kurz- oder langfristige Speicherung von Informationen wesentlich ist.


Mirko Hansen beim Überprüfen der hergestellten Speicherzellen mittels eines Mikroskops im Reinraum der Kieler Technischen Fakultät.

Foto/Copyright: AG Nanoelektronik

In modernen Computern wird dieser Grundsatz in praktisch jedem Bit (der Maßeinheit für digitalen Informationsgehalt) umgesetzt und die schier unglaubliche Leistungssteigerung der vergangenen Jahrzehnte beruhte dabei auf einem sehr einfachen Prinzip: immer schnellere Prozessoren und immer mehr Speicherplatz.

Übliche Informationsspeicher basieren auf Elektronen, die durch Anlegen einer Spannung verschoben werden. Die Entwicklung immer kleinerer und energieeffizienterer Speicher nach diesem Prinzip stößt aber zunehmend an ihre Grenzen: In unseren Computern gibt es nämlich nicht nur einen Speicher, sondern je nach Aufgabe mehrere optimierte.

„Das Verschieben von Daten zwischen den einzelnen Speichern nimmt mittlerweile eine nicht mehr zu vernachlässigende Zeit in Anspruch. Vereinfacht gesagt: Es wird mehr hin und her verschoben, als dass gerechnet wird“, sagt Kohlstedt. Deshalb arbeiten weltweit Industrieunternehmen und Forschungsinstitute an einem effizienteren Universalspeicher, der die Vorzüge aller Speicher vereint und möglichst wenige Daten hin und her schiebt.

Dafür wollen die Forschenden weg von den ladungsbasierten Speichern hin zu solchen, die auf dem elektrischen Widerstand beruhen. So ein Bauelement kommt nun aus den Kieler und Bochumer Laboren. Es besteht aus zwei metallischen Elektroden, welche durch einen sogenannten Festkörperionenleiter, meist ein Übergangsmetalloxid, getrennt werden.

Wird nun eine Spannung angelegt, ändert sich der ohmsche Widerstand der Speicherzelle. Dafür sorgen Oxidations- und Reduktionsprozesse an den Elektroden sowie eine Verschiebung von Ionen innerhalb der Schicht dazwischen. Der Vorteil: So aufgebaute Zellen lassen sich leicht herstellen und bis nahezu der Größe von Atomen verkleinern.

Eine hohe Speicherdauer erreichen die Wissenschaftler, indem sie die Ionendichte in den Zellen über die angelegte Spannung genau einstellen. „Das war eine große Herausforderung“, sagt Mirko Hansen, Doktorand und Erstautor der Studie aus Kohlstedts Team, denn um das zu schaffen mussten elektronische und ionische Effekte entkoppelt werden.

„Elektronen sind rund 1000 mal leichter als Ionen und bewegen sich damit deutlich leichter unter dem Einfluss einer externen Spannung. Dies konnten wir erfolgreich ausnutzen, womit in unserem Bauelement Ionen für extrem kleine Spannungen unbeweglich sind, während Elektronen mobil bleiben und zum Auslesen des Speicherzustandes verwendet werden können.“

Der Clou: Die Forschenden bauten einen nur wenige Nanometer (= ein Milliardstel Meter) dünnen Ionenleiter, um quantenmechanische Effekte für den Strom durch die Speicherzelle auszunutzen. „Der Tunneleffekt erlaubt es uns, Elektronen durch die ultradünne Schicht zu bewegen, und das mit einem sehr geringen Energieaufwand“, sagt Martin Ziegler, Koautor der Veröffentlichung aus Kiel.

Im Klartext: Ionen werden innerhalb der Speicherzelle bei Spannungen über einem Volt bewegt, Elektronen hingegen bei Spannungen weit unter einem Volt. So können Ionen gezielt zum Speichern und Elektronen zum Auslesen von Daten verwendet werden.

Die Forschung habe noch eine weitere, hochinteressante Komponente, berichten die Forschenden. Die neuen widerstandsbasierten Speicher könnten sogar Gehirnstrukturen nachbilden. Eine schnelle Mustererkennung, ein geringer Energieverbrauch verbunden mit einer enormen Parallelverarbeitung der Daten würden revolutionäre Rechnerarchitekturen erlauben. „In Verbindung mit Begriffen wie Industrie 4.0, in der autonome Roboter arbeiten, oder selbstfahrende Autos, die auf unseren Straßen unterwegs sind, eröffnet das ein riesiges Feld für Innovationen“, ordnen Professor Hermann Kohlstedt und sein Bochumer Kollege Dr. Thomas Mussenbrock die Forschungsergebnisse ein. Beide arbeiten in der „Forschergruppe 2093“ an der Entwicklung künstlicher neuronaler Netzwerke.

Originalpublikation
M. Hansen, M. Ziegler, L. Kolberg, R. Soni, S. Dirkmann, T. Mussenbrock & H. Kohlstedt. A double barrier memristive device. Published 08 September 2015, Scientific Reports 5, Article number: 13753 (2015). doi:10.1038/srep13753


Weitere Informationen:
www.for2093.uni-kiel.de

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Kontakt:
Professor Dr. Hermann Kohlstedt
Nanoelektronik
Universität Kiel
Tel.: 0431/880 6075
E-Mail: hko@tf.uni-kiel.de


Mirko Hansen
Nanoelektronik
Universität Kiel
Tel.: 0431/880 6079
E-Mail: mha@tf.uni-kiel.de


Dr. Martin Ziegler
Nanoelektronik
Universität Kiel
Tel.: 0431/880 6067
E-Mail: maz@tf.uni-kiel.de


Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Denis Schimmelpfennig
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Jubiläum: www.uni-kiel.de/cau350 
Twitter: www.twitter.com/kieluni , Facebook: www.facebook.com/kieluni 
Link zur Pressemitteilung: http://www.uni-kiel.de/pressemeldungen/?pmid=2015-355-nanoionischer-speicher

Denis Schimmelpfennig | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Rostocker Forscher entwickeln autonom fahrende Kräne
20.07.2018 | Universität Rostock

nachricht Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation
13.07.2018 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics