Ionenstrahlen ebnen den Weg zu neuen Ventilen für die Spintronik

Mit Ionenstrahlen konnten sie eine Eisen-Aluminium-Legierung so strukturieren, dass das Material auf der Nanometer-Skala in unterschiedlich magnetisierbare Bereiche unterteilt ist.

Die Legierung kann somit die Funktion eines Spin-Ventils ausüben, das als Bauelement für die Spintronik von großem Interesse ist. Diese Technologie nutzt für die Informationsspeicherung und -verarbeitung nicht nur die Ladung von Elektronen, sondern auch deren innere magnetische Eigenschaften (Spin). Die Spintronik hat ein großes Potenzial beispielsweise für magnetische Arbeitsspeicher.

Üblicherweise bestehen Spin-Ventile aus nicht-magnetischen und ferromagnetischen Lagen, die übereinander geschichtet werden. Das ist aufwändig, und die zuverlässige Kontaktierung dieser Bauelemente stellt hohe Anforderungen. HZDR-Forscher Dr. Rantej Bali und seine Kollegen verfolgten deshalb einen anderen Weg.

„Wir haben Strukturen mit lateraler Spinventil-Geometrie hergestellt, die unterschiedlichen magnetischen Bereiche sind hier nebeneinander angeordnet anstatt übereinander gestapelt“, so Bali. Eine parallele Bearbeitung größerer Oberflächen sollte somit einfach möglich sein und eine kostengünstige Herstellung erlauben.

Zunächst haben die Wissenschaftler eine dünne Schicht einer Eisen-Aluminium-Legierung (Fe60Al40) bei 500 Grad Celsius getempert. Dadurch bildete sich eine hochgeordnete Struktur, in der jede zweite Atomlage nur aus Eisenatomen bestand. Diese Substanz verhielt sich, wie die Forscher erwarteten, paramagnetisch – die magnetischen Momente waren also ungeordnet. Anschließend überzogen die Wissenschaftler die Legierung so mit einem Schutzlack, dass auf der Oberfläche ein Streifenmuster entstand. Die freien Bereiche waren abwechselnd zwei Mikrometer und 0,5 Mikrometer breit und durch Lackstege mit einer Breite von 40 Nanometern voneinander getrennt.

Dieses Material wurde dann im Ionenstrahlzentrum des HZDR mit Neon-Ionen bestrahlt – mit gravierenden Folgen. Wie die Forschungsergebnisse der Wissenschaftler zeigen, weist das bestrahlte Material sehr interessante Eigenschaften auf. Unter den schützenden Lackstegen bleibt es paramagnetisch. Doch die schmalen und breiten Streifen dazwischen werden ferromagnetisch. Diese Bereiche lassen sich magnetisieren. „Ein Spin-Ventil wird über das Magnetfeld geschaltet. Je nach Orientierung der Spins – parallel oder antiparallel – ändert sich der elektrische Widerstand. Wir interessieren uns für die Größe des Effektes“, sagt Bali. Ein von außen angelegtes Magnetfeld bewirkt, dass sich die Spins in diesen Bereichen geordnet ausrichten. Je nach Stärke des Magnetfelds können sie parallel oder antiparallel eingestellt werden. Diese Magnetisierung ist permanent und geht nicht verloren, wenn das äußere Feld abgeschaltet wird.

Die Ursache für dieses Verhalten liegt darin, dass die Ionenstrahlen die Struktur der Legierung verändern. „Die geordnete Struktur mit den Eisen-Lagen wird durch die Ionen zerstört. Die Ionen stoßen die Atome von ihren Plätzen, und andere Atome füllen diese Plätze auf. Eisen- und Aluminiumatome sind danach zufällig verteilt“, erläutert Sebastian Wintz, der als Doktorand an den Forschungsarbeiten beteiligt war. Für dieses Bäumchen-Wechsel-Dich-Spiel auf atomarer Ebene genügt eine geringe Ionendosis. „Es ist eine Kaskade“, beschreibt Wintz den Vorgang, „ein einziges Ion kann bis zu 100 Atome deplatzieren.“ In die Bereiche unter den Lackstegen können die Ionen hingegen nicht eindringen. Daher bleiben diese Regionen paramagnetisch, und sie trennen die ferromagnetischen Streifen voneinander.

In Zusammenarbeit mit Wissenschaftlern vom Helmholtz-Zentrum Berlin gelang es, die magnetische Struktur des Materials sichtbar zu machen. Dazu wurde das Spezial-Mikroskop SPEEM (spin-resolved photoemission microscope) genutzt, das am Synchrotron BESSY 2 betrieben wird. Die mikroskopischen Aufnahmen lassen die unterschiedlich magnetisierten Bereiche erkennen und zeigen, welch hohe räumliche Auflösung bei dem Strukturierungsverfahren erreicht werden kann.

In weiteren Versuchen wollen Rantej Bali und seine Kollegen nun die Eigenschaften des magnetisch strukturierten Materials weiter untersuchen. Außerdem möchten die Forscher herausfinden, ob eine weitere Miniaturisierung möglich ist. Je kleiner Bauelemente wie Spin-Ventile sind, umso leistungsfähiger werden die elektronischen Bauteile.

Text: Uta Bilow

Publikation: Rantej Bali u.a., Nano Letters 14, 435 (2014), DOI: 10.1021/nl404521c

Weitere Informationen:
Dr. Rantej Bali / Sebastian Wintz
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-2919
E-Mail: r.bali@hzdr.de / s.wintz@hzdr.de
Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. +49 351 260 – 2450 oder +49 160 969 288 56 | c.bohnet@hzdr.de |
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Media Contact

Dr. Christine Bohnet Helmholtz-Zentrum

Weitere Informationen:

http://www.hzdr.de

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer