Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligente Robotersteuerung durch adaptives Embedded Brainreading

22.07.2015

Ob im Weltall, in der Produktionshalle oder bei der Rehabilitation von Schlaganfallpatienten – das Robotics Innovation Center des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) GmbH und die Arbeitsgruppe Robotik der Universität Bremen – beide unter der Leitung von Prof. Dr. Frank Kirchner – haben im Projekt IMMI (Intelligentes Mensch-Maschine-Interface) Schlüsseltechnologien für die Steuerung von Robotern entwickelt, die echtzeitfähiges und adaptives Embedded Brain Reading in vielen Anwendungsbereichen ermöglichen.

Die Raumfahrt-Agentur des Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR) förderte das Projekt mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) über fünf Jahre mit rund 3,7 Mio. Euro.


Robotersteuerung mittels der im DFKI-Projekt IMMI entwickelten Technologien.

DFKI GmbH

Neurowissenschaftler, Informatiker, Mathematiker, Physiker und Ingenieure arbeiteten in IMMI gemeinsam an einer intelligenten Mensch-Maschine-Schnittstelle, die nicht nur die intuitive und effektive Steuerung eines oder mehrerer Roboter ermöglicht, sondern sich auch selbstständig an Änderungen des mentalen Zustands des Nutzers und an wechselnde Benutzer anpassen kann.

Im Gegensatz zu klassischen Brain-Computer-Interfaces basiert das entwickelte System auf der passiven Beobachtung des Operators durch Embedded Brain Reading. Dafür trägt der Operator eine mit Elektroden bestückte Kappe, die es dem System mittels Elektroenzephalografie (EEG) ermöglicht, die Gehirnaktivität zu messen und spezifische Änderungen von Gehirnströmen zu interpretieren.

Diese Änderungen erlauben zum Beispiel Aussagen über den Stand der Verarbeitung von präsentierter Information, über die Absichten des Operators oder über dessen kognitive Auslastung. Die Schnittstelle erhält dadurch wichtige Informationen, um den Menschen proaktiv in kritischen Situationen zu unterstützen oder die Effektivität der Steuerung anwenderspezifisch zu steigern.

Hat der Operator beispielsweise eine vom Roboter gesendete Warnmeldung übersehen, so weist ihn das System erneut darauf hin; ist der Anwender kognitiv überfordert, so wird seine Belastung reduziert.

Um die Handlungsabsicht und Aufgabenauslastung des Operators präzise einschätzen zu können, setzen die Forscherinnen und Forscher zusätzlich zum EEG auf Elektromyografie (EMG) zur Messung der Muskelaktivität und auf Eye-Tracking, das die Blickrichtung registriert. Auf diese Weise entsteht ein umfassendes Bild des kognitiven Zustands des Anwenders.

Die Schnittstelle lernt aus diesen Daten und darauffolgenden Handlungen, welche Sequenzen in den Hirnströmen eine Wahrnehmung oder Aktion bedeuten. Auf diese Weise kann sich das System in Echtzeit an wechselnde Zustände des Benutzers und sogar automatisch an neue Benutzer anpassen.

Die Vielzahl komplizierter mathematischer Verfahren, die beim echtzeitfähigen und adaptiven Brain Reading zur Anwendung kommt, erfordert eine besonders große Rechenleistung. Gleichzeitig soll der Operator möglichst mobil sein und sich frei bewegen können, was den Einsatz großer Rechner ausschließt.

Aus diesen Gründen wurde in IMMI ein kompaktes Brain-Reading-System entwickelt, das eine normale CPU mit einem FPGA (Field Programmable Gate Array) auf einer 7 x 10 cm großen Elektronikplatine kombiniert. FPGAs ermöglichen parallele Verarbeitungsoperationen und können daher große Datenmengen in kürzester Zeit verarbeiten. Das entwickelte System kann entweder eigenständig mobil oder zur Optimierung von Embedded Brain Reading in ein technisches System eingebettet angewendet werden.

Die Software-Frameworks pySPACE und reSPACE wurden im Projekt eigens für die Verarbeitung großer Datenmengen entwickelt. Die Open-Source-Software pySPACE erlaubt eine einfache Konfiguration und parallele Ausführung komplexer Vergleiche sowie die Optimierung und Visualisierung von über 200 verschiedenen Verarbeitungs- und Auswertungsmethoden.

Über eine automatisch erzeugte Hochleistungsschnittstelle kann pySPACE auf reSPACE zugreifen und dadurch zeitkritische Verarbeitungsschritte auf den FPGA auslagern. Mit Hilfe von reSPACE können anwendungsspezifische Hardwarebeschleuniger die Verarbeitung der Daten besonders effizient und in Echtzeit durchführen.

Neben Anwendungen in der Raumfahrt sollen die in IMMI entwickelten Technologien auch in der medizinischen Rehabilitation eingesetzt werden. Im kürzlich gestarteten Projekt RECUPERA-Reha arbeiten DFKI-Wissenschaftlerinnen und Wissenschaftler an Methoden zum Aufbau eines innovativen und mobilen Ganzkörper-Exoskeletts, das durch die Vorhersage von Bewegungsabsichten auf Basis der in IMMI entwickelten Technologien, Schlaganfall-Patienten rehabilitativ unterstützen soll.

DFKI-Kontakt
Dr. rer. nat. Elsa Andrea Kirchner
Robotics Innovation Center
E-Mail: Elsa.Kirchner@dfki.de
Tel.: 0421 178 45 4113

DFKI-Pressekontakt
Unternehmenskommunikation Bremen
E-Mail: uk-hb@dfki.de
Tel.: 0421 178 45 4180

Andrea Fink | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.dfki.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht IT-Sicherheit beim autonomen Fahren
22.06.2018 | Fachhochschule St. Pölten

nachricht Schneller und sicherer Fliegen
21.06.2018 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics