Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus Indizien auf die eigentliche Größen schließen: ein Fall für Mathematiker

06.05.2009
PTB entwickelt mathematische Auswerteverfahren zur zerstörungsfreien Messung von Nanostrukturen

Lässt sich die Schuld eines Angeklagten nicht direkt nachweisen, dann können Indizien helfen. Ähnlich indirekt müssen auch Experten fürs genaue Messen immer häufiger vorgehen: Lässt sich eine Messgröße nicht direkt messen, dann muss man andere Größen messen und mit Hilfe intelligenter Computerprogramme auf die eigentlich interessierende Größe rückschließen.

Genauso sind Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) zusammen mit Partnern in einem Verbundprojekt des Bundesforschungsministeriums (BMBF) vorgegangen. Es geht um die Messung von immer kleineren Computerbauteilen und anderen industriellen Strukturen, die nur noch nanometergroß sind und sich daher nicht mehr mit der klassischen Methode der Lichtmikroskopie untersuchen lassen.

Eine neue Methode, solche Strukturen zu untersuchen, ist die Scatterometrie. Dabei wird an periodischen Nanostrukturen Licht gestreut und aus den Eigenschaften des gestreuten Lichtes auf die Abmessungen der Probe geschlossen. Die Projektpartner haben nun ein mathematisches Modell und ein sogenanntes inverses Verfahren entwickelt, die solche Messungen mit großer Genauigkeit ermöglichen.

Schon heute werden in der PTB die neuen Messmethoden entwickelt, die in der Industrie zur Charakterisierung und Qualitätskontrolle von Nanostrukturen, also Objekten mit Abmessungen von weniger als 1/1000 Millimetern, erforderlich sind. Solch kleine Bauteile werden in Zukunft immer wichtiger, um Computer noch schneller zu machen, völlig neue Produkte zu entwickeln oder bei existierenden Technologien den Material- oder Energieeinsatz zu minimieren.

Die entsprechenden Messmethoden müssen nicht nur stets noch präziser werden, sondern erfordern auch immer häufiger aufwendige mathematische Auswerteverfahren. Ein neue Methode zur zerstörungs- und kontaminationsfreien sowie schnellen Vermessung von Nanostrukturen ist die Scatterometrie, bei der an periodischen Nanostrukturen Licht gestreut und aus den Eigenschaften des gestreuten Lichtes indirekt auf die Abmessungen der Probe geschlossen wird. Dazu sind ein korrektes mathematisches Modell und ein so genanntes inverses Verfahren notwendig, bei dem aus den Messdaten (Streueffizienzen) auf die eigentlich interessierenden geometrische Größen zur Charakterisierung der Nanostrukturen geschlossen wird. Ein solches Auswertungsverfahren ist jetzt von der PTB-Arbeitsgruppe Modellierung und Simulation in Zusammenarbeit mit Mathematikern am Weierstrass-Institut für Angewandte Analysis und Stochastik in Berlin sowie Experimentatoren der PTB-Arbeitsgruppen Höchstauflösende Mikroskopie und EUV-Radiometrie entwickelt worden. Die Gesamtkooperation ist Teil des BMBF-Verbundprojekts CDuR32.

Das klassische Verfahren zur Sichtbarmachung und Messung kleiner Strukturen ist die Mikroskopie. Optische Abbildungsverfahren sind zerstörungsfrei und sehr schnell. Das erreichbare Auflösungsvermögen ist jedoch durch die Wellenlänge des verwendeten Lichts begrenzt. Da die neuen nano-strukturierten Objekte viel kleiner als die Wellenlänge sichtbaren Lichtes sind, werden auch neue Messmethoden benötigt. Dabei werden entweder Licht viel kleinerer Wellenlänge oder nicht-abbildende Verfahren verwendet.

Gegenstand dieser Untersuchungen sind z.B. Halbleiterphotomasken, auf denen die Abmessungen periodischer Linienstrukturen (Liniengitter) scatterometrisch bestimmt werden. Dazu wird sichtbare oder UV-Strahlung auf die Probe gerichtet und die räumliche Verteilung der gestreuten Strahlung gemessen (Abb. 1). Die PTB betreibt für diese Anwendung zwei verschiedene Scatterometer, die mit Licht verschiedener Wellenlängen arbeiten: ein EUV-Scatterometer [1], das bei Wellenlängen zwischen 12 Nanometern und 14 Nanometern betrieben wird, sowie ein DUV-Scatterometer, das Licht einer Wellenlänge von 193 Nanometern verwendet [2]. Mit Hilfe komplexer mathematischer Modelle wird dabei jeweils aus der Intensitätsverteilung die geometrische Form der Oberflächenstrukturen rekonstruiert [3, 4].

Mathematische Modelle und ausführliche Berechnungen sind insbesondere auch notwendig, um die Präzision bzw. Messunsicherheit der gemessenen Strukturparameter anzugeben [4, 5]. Untersuchungen der PTB-Arbeitsgruppe Modellierung und Simulation zeigen, dass Abmessungen im Bereich zwischen 50 Nanometern und 500 Nanometern mit den in der PTB vorhandenen Instrumenten mit einer relativen Unsicherheit von weniger als 2 % bestimmt werden können. Erste Vergleiche der Resultate von EUV- und DUV-Scatterometrie ergeben zudem eine gute Übereinstimmung von unabhängigen Messungen an denselben Proben. Weitere Arbeiten mit Hilfe von Simulationen (virtuelles Experiment) zielen auf eine Optimierung der Messparameter ab [6], darunter der Einfallswinkel des Lichts oder die Anzahl der notwendigen Messungen zur präzisen Rekonstruktion der Strukturen.

Wissenschaftliche Veröffentlichungen dazu:
[1] C. Laubis, et al. (2006): Characterization of large off-axis EUV mirrors with high accuracy reflectometry at PTB, Proc. SPIE 6151, 61510I.

[2] M. Wurm, B. Bodermann; F. Pilarski (2007): Metrology capabilities and performance of the new DUV scatterometer of the PTB Proc. SPIE 6533 65330H.

[3] R. Model, A. Rathsfeld, H. Groß, M. Wurm, B. Bodermann (2008): A scatterometry inverse problem in optical mask technology. J. Phys., 135, 012071.

[4] H. Gross, A. Rathsfeld, F. Scholze, M. Bär (2009): Profile reconstruction in EUV scatterometry: Modeling and uncertainty estimates. WIAS Preprint No. 1411(http://www.wias-berlin.de/main/publications/wias-publ/).

[5] H. Gross, A. Rathsfeld, F. Scholze, R. Model, M. Bär (2008): Computational methods estimating uncertainties for profile reconstruction in scatterometry. Proc. SPIE 6995, 6995OT.

[6] H. Gross, A. Rathsfeld (2008): Sensitivity Analysis for Indirect Measurement in Scatterometry and the Reconstruction of Periodic Grating Structures. Waves in Random and Complex Media, 18, 129.

Ansprechpartner:
Dr. Hermann Groß, Dr. Markus Bär, PTB-Fachbereich 8.4 Mathematische Modellierung und Datenanalyse, Tel. (030) 3481-7405 und (030) 3481-7687,

E-Mails: hermann.gross@ptb.de und markus.baer@ptb.de

Dr. B. Bodermann, FB 4.2, PTB-Fachbereich 4.2 Bild- und Wellenoptik, Tel. (0531) 592-4222, E-Mail: bernd.bodermann@ptb.de

Dr. Frank Scholze, PTB-Fachbereich 7.2 Radiometrie mit Synchrotronstrahlung, Tel. (030) 6392-5094, E-mail: frank.scholze@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Metamolds: Eine Gussform für eine Gussform
20.08.2018 | Institute of Science and Technology Austria

nachricht Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker
17.08.2018 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics