Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Idealgrösse eines Computer-Speicherelements

04.12.2017

Eine hochpräzise Simulation einer Computer-Speicherlösung namens CBRAM zeigt deren ideale Geometrie auf: zwei Elektroden, getrennt durch einen Halbleiter von wenigen Atomen Dicke.

CBRAMs (Conductive Bridging Random Access Memories) könnten eine zukunftsweisende Lösung der Speicherproblematik sein, da sich in ihnen Daten nahezu permanent speichern lassen. Um sie möglichst klein und energiesparend zu gestalten, muss genau bekannt sein, wie sie sich auf atomarer Ebene verhalten.


Numerische Simulation eines CBRAM-Speichers auf atomarer Ebene bei einer Spannung von einem Millivolt; Elektronenbahnen (blaue und rote Linien); Kupferatome (grau), Silizium- u. Sauerstoffatome (oran

© Mathieu Luisier / ETH Zurich

Das Team von Mathieu Luisier, ausserordentlicher Professor an der ETH Zürich, befasst sich mit dieser Art von Speichern aus zwei Metall-Elektroden, getrennt durch einen Halbleiter. Im Team wurde ein numerisches Computermodell eines CBRAM entwickelt; es besteht aus rund 4500 Atomen und unterliegt den für die mikroskopische Welt massgeblichen Gesetzen der Quantenmechanik. Diese Simulation auf atomarer Nanoebene ermöglicht eine präzise Beschreibung der Stärke des von einem Nano-Metallfaden erzeugten Stroms, der sich zwischen den Elektroden auf- oder abbaut.

Ein knappes Dutzend Atome dick

"Dies ist ein enormer Fortschritt", betont Luisier, SNF-Förderprofessor von 2011 bis 2016 an der ETH Zürich. "Bis anhin umfassten die bestehenden Modelle rund einhundert Atome." Das neue Modell generiert ein realistisches Bild des elektrischen Stroms sowie der vom Speicherelement abgegebenen elektrischen Leistung, sodass sich ihre Temperatur berechnen lässt. Veränderungen der einzelnen Parameter der Speicherlösung ermöglichen es den Forschenden, die Auswirkungen von verschiedenen Halbleiterdicken und unterschiedlich starken Metallfäden zu beobachten.

Die an der IEDM-Konferenz in San Francisco im Dezember 2017 vorgestellten Arbeiten belegen, dass der lokale Energieverbrauch und die Erhitzung sinken, wenn man die beiden Elektroden einander annähert (*). Dies gilt bis zu einem gewissen Punkt: Eine zu grosse Nähe der Elektroden kann den quantenmechanischen Tunneleffekt zur Folge haben, sodass sich der Stromfluss zwischen ihnen nicht mehr steuern lässt.

Die Arbeiten zeigen so die Idealgeometrie eines CBRAM-Speichers auf: ein Halbleiter von 1,5 bis 2 Nanometern Dicke, was knapp einem Dutzend Atomen entspricht. Nach wie vor ist die Herstellung solcher Speicher aber nicht ganz einfach: Maschinen, die in derartig kleinen Dimensionen arbeiten können, bedienen sich einer Technik zur Atomverdampfung, die sich derzeit nur schwer mit einer Massenproduktion vereinbaren lässt.

"Der Kanal eines handelsüblichen CMOS-Transistors misst heutzutage rund 20 Nanometer und ist somit zehnmal breiter als der Halbleiter der untersuchten CBRAMs", wie Luisier ausführt. "Es könnte daher sein, dass das mooresche Gesetz – das davon ausgeht, dass sich die Grösse elektronischer Bauteile alle 18 bis 24 Monate halbiert – in den nächsten zehn Jahren endgültig ausser Kraft gesetzt wird."

Zum Bau des 4500-Atom-Modells stand den Forschenden ein äusserst leistungsstarker Computer namens Piz Daint zur Verfügung – weltweit steht der im Nationalen Hochleistungsrechenzentrum CSCS in Lugano stehende Rechner an dritter Stelle; er ist in der Lage, pro Sekunde über 20 Millionen Milliarden Rechenoperationen zu verarbeiten.

Um eine solche Studie durchzuführen, braucht es mindestens 230 modernste Grafikkarten. Piz Daint umfasst über 4000 solcher Karten, die jeweils mit einem eigenen CPU-Prozessor verbunden sind, "Selbst bei einer derart starken Rechenleistung nehmen die Simulation und die Bestimmung der elektrischen Eigenschaften eines solchen Speichers mehrere Stunden in Anspruch", erklärt Luisier.

(*) F. Ducry et al.: Ab-initio Modeling of CBRAM Cells: from Ballistic Transport Properties to Electro-Thermal Effects. Proceedings of the IEDM Conference 2017.

Diese Arbeiten wurden durch den SNF, die Werner Siemens-Stiftung, einen ETH Research Grant und das Nationale Hochleistungsrechenzentrum CSCS gefördert.

Unterstützung für den wissenschaftlichen Nachwuchs

Der SNF lanciert ein neues Förderungsinstrument, um Wissenschaftler auf dem Weg zur Professur zu unterstützen. Mit einem SNSF Eccellenza Grant können Assistenzprofessorinnen und Assistenzprofessoren mit Tenure Track ein eigenes Forschungsteam auf die Beine stellen und ein ambitioniertes wissenschaftliches Projekt leiten. Ein SNSF Eccellenza Professorial Fellowship finanziert den Lohn der Assistenzprofessur und die Projektkosten. Eccellenza ersetzt die SNF-Förderungsprofessuren. Dieses Instrument hat seit 2000 691 Forschende unterstützt und zwar mit grossem Erfolg: 80% der Beitragsempfangenden sicherten sich in der Folge eine Professur in der Schweiz oder im Ausland.

Kontakt

Prof. Mathieu Luisier
Integrated Systems Laboratory, ETH Zurich
CH-8092 Zürich
Telefon: +41 44 632 53 33 oder +41 79 454 93 78
E-Mail: mluisier@iis.ee.ethz.ch

Weitere Informationen:

http://www.snf.ch/de/fokusForschung/newsroom/Seiten/news-171204-medienmitteilung...
https://iis-people.ee.ethz.ch/~mluisier/iedm_abstract_ducry.pdf
http://www.snf.ch/de/foerderung/karrieren/eccellenza/Seiten/default.aspx
http://p3.snf.ch/Project-159314 'Projet: Physics-based Modeling of Electronic Devices at the Nanometer Scale'

SNF Medien - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer
14.08.2018 | Institute of Science and Technology Austria

nachricht Sicherheitslücken im Internetprotokoll „IPsec“ identifiziert
14.08.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics