Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

HZDR-Forschern gelingt gezielte Steuerung extrem kurzwelliger Spinwellen

25.02.2019

In den vergangenen Jahren kannte die Entwicklung in der elektronischen Datenverarbeitung nur eine Richtung: Die Industrie verkleinerte die Bauteile bis in den Nanometerbereich. Doch langsam stößt dieser Prozess an eine physikalische Grenze. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) arbeiten deswegen an einer Alternative, die den Informationstransport in kompakteren Mikrochips ermöglichen soll: Spinwellen. In einer Kooperation ist es ihnen gelungen, diese sogenannten Magnonen mit extrem kurzen Wellenlängen zu erzeugen und sie gezielt zu lenken. Wie die Physiker in der Zeitschrift Nature Nanotechnology erklären, nutzen sie dafür ein natürliches magnetisches Phänomen.

In der Welt der modernen Kommunikationstechnologien galt eine Entwicklung lange Zeit als sicher: Etwa alle zwei Jahre verdoppelt sich die Zahl der Transistoren auf einem Mikroprozessor. Die damit einhergehende Leistungssteigerung bescherte uns die digitalen Möglichkeiten, die mittlerweile wie selbstverständlich erscheinen: vom Hochgeschwindigkeitsinternet bis zum Smartphone.


Eine Spinwelle breitet sich entlang einer magnetischen Domänenwand aus.

HZDR / Juniks

Doch die zunehmend feineren Leiterbahnen auf den Chips werden langsam zum Problem, wie Dr. Sebastian Wintz vom HZDR-Institut für Ionenstrahlphysik und Materialforschung erläutert:

„In den derzeitigen Mikroprozessoren fließen Elektronen. Aufgrund des elektrischen Widerstands heizen sie den Chip auf. Ab einem gewissen Punkt versagen die Chips einfach, da die Wärme nicht mehr abgeführt werden kann.“ Das verhindert auch eine weitere Geschwindigkeitssteigerung der Bauteile.

Für den Physiker, der momentan auch am Paul Scherrer Institut (PSI) in der Schweiz forscht, sehen die Informationsträger der Zukunft deshalb anders aus. Anstatt auf bewegte Ladungen setzen Wintz und seine Kollegen auf eine bestimmte Eigenschaft der Elektronen: den Spin. Die winzigen Teilchen verhalten sich so, als ob sie sich ständig um sich selbst drehen würden, was ein magnetisches Moment erzeugt.

In bestimmten magnetischen Materialien, wie etwa in Eisen oder Nickel, sind die Spins für gewöhnlich parallel zueinander ausgerichtet. Wird nun aber die Orientierung der Spins an einem Ort geändert, setzt sich diese Störung über die benachbarten Teilchen fort. Eine Spinwelle wird ausgelöst, in der sich Informationen codieren und weitergeben lassen.

„Die Elektronen bleiben in diesem Fall jedoch am Fleck“, beschreibt Wintz den Vorteil. „Es entsteht so kaum Wärme. Spin-basierte Bauteile könnten dadurch wesentlich weniger Energie benötigen.“

Wie lässt sich die Welle bändigen?
Zwei grundlegende Herausforderungen erschweren den Einsatz der Spinwellen allerdings bislang: Die erzeugbaren Wellenlängen sind nicht kurz genug für die nanometer-kleinen Strukturen auf den Chips und es fehlt an einer Möglichkeit, die Wellen gezielt zu steuern. Für beide Probleme konnten die Forscher um Sebastian Wintz nun eine Lösung finden. „Anders als bisher nutzen wir für die Anregung der Welle nicht eine künstlich hergestellte Antenne, sondern eine im Material natürlich geformte“, erklärt der Erstautor der Studie, Dr. Volker Sluka.

„Dafür haben wir zwei dünne ferromagnetische Plättchen in scheibenähnliche Elemente strukturiert und mit einer Ruthenium-Trennschicht antiferromagnetisch gekoppelt. Daneben haben wir das Material der Plättchen so gewählt, dass sich die Spins bevorzugt entlang einer bestimmten Raumachse ausrichten, wodurch sich die gewünschte magnetische Struktur ergibt."

Innerhalb der beiden Schichten entstehen so Bereiche mit unterschiedlichen Magnetisierungen, die eine sogenannte Domänenwand voneinander trennt. Anschließend setzten die Wissenschaftler die Schichten magnetischen Wechselfeldern mit einer Anregungsfrequenz von einem Gigahertz oder mehr aus. Mit Hilfe eines Röntgen-Mikroskops des Stuttgarter Max-Planck-Instituts für Intelligente Systeme, das am Helmholtz-Zentrum Berlin betrieben wird, konnten sie beobachten, dass sich Spinwellen mit parallelen Wellenfronten dabei senkrecht zur Domänenwand ausbreiten.

„Bei früheren Versuchen war die Ausstrahlung mit einer Wasserwelle vergleichbar, die ein Steinwurf auslöst“, berichtet Sluka. „Das ist nicht optimal, da die Ausbreitung in alle Richtungen die Schwingung schnell abschwächt. Jetzt sehen die Wellen dagegen so aus, um im gleichen Bild zu bleiben, als würde man einen langen Stab im Wasser hin und her bewegen.“

Wie die Röntgenaufnahmen gezeigt haben, können diese Spinwellen bei Wellenlängen von nur etwa 100 Nanometern mehrere Mikrometer zurücklegen, ohne signifikant an Signal zu verlieren – eine nötige Bedingung für den Einsatz in moderner Informationstechnologie. Einen möglichen Weg, diese neuartigen Informationsträger gezielt zu lenken, haben die Physiker darüber hinaus entdeckt, als sie die Anregungsfrequenz unter ein halbes Gigahertz setzten. Hier bleiben die Spinwellen in der Domänenwand gefangen:

„Die Wellen können in diesem Fall sogar um die Kurve laufen“, erzählt Volker Sluka und fügt an: „Trotzdem können wir die Signale immer noch detektieren.“ Mit ihren Ergebnissen liefern die Forscher somit wichtige Voraussetzungen für die weitere Entwicklung von Schaltkreisen, die auf Spinwellen basieren.

Das könnte langfristig sogar ein komplett anderes Design von Mikroprozessoren ermöglichen, schätzt Sebastian Wintz ein: „Wir können die Domänenwände mit Hilfe von Magnetfeldern relativ einfach verschieben. Das bedeutet, dass Chips, die mit Spinwellen arbeiten, nicht unbedingt eine im Vorhinein festgelegte Architektur bräuchten, sondern später verändert und an neue Herausforderungen angepasst werden könnten.“

Publikation:
V. Sluka, T. Schneider, R.A. Gallardo, A. Kákay, M. Weigand, T. Warnatz, R. Mattheis, A.Roldan-Molina, P. Landeros, V. Tiberkevich, A. Slavin, G. Schütz, A. Erbe, A. Deac, J. Lindner, J. Raabe, J. Fassbender, S. Wintz: Emission and propagation of 1D and 2D spin-waves with nanoscale wavelengths in anisotropic spin textures, in Nature Nanotechnology, 2019 (DOI: 10.1038/s41565-019-0383-4)

Weitere Informationen:
Dr. Sebastian Wintz
Institut für Ionenstrahlphysik und Materialforschung am HZDR / Paul Scherrer Institut, Schweiz
Tel.: +49 351 260-3221 | E-Mail: s.wintz@hzdr.de

Dr. Volker Sluka
Institut für Ionenstrahlphysik und Materialforschung am HZDR
E-Mail: v.sluka@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel.: +49 351 260-3400 | Mobil: +49 175 874 2865 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Wissenschaftliche Ansprechpartner:

Dr. Sebastian Wintz
Institut für Ionenstrahlphysik und Materialforschung am HZDR / Paul Scherrer Institut, Schweiz
Tel.: +49 351 260-3221 | E-Mail: s.wintz@hzdr.de

Dr. Volker Sluka
Institut für Ionenstrahlphysik und Materialforschung am HZDR
E-Mail: v.sluka@hzdr.de

Originalpublikation:

V. Sluka, T. Schneider, R.A. Gallardo, A. Kákay, M. Weigand, T. Warnatz, R. Mattheis, A.Roldan-Molina, P. Landeros, V. Tiberkevich, A. Slavin, G. Schütz, A. Erbe, A. Deac, J. Lindner, J. Raabe, J. Fassbender, S. Wintz: Emission and propagation of 1D and 2D spin-waves with nanoscale wavelengths in anisotropic spin textures, in Nature Nanotechnology, 2019 (DOI: 10.1038/s41565-019-0383-4)

Weitere Informationen:

https://www.hzdr.de/presse/kontrolle_spinwellen

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Künstliche Intelligenz für die Notfallmedizin
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Selbstadaptive Systeme: KI übernimmt Arbeit von Software-Ingenieuren
09.07.2020 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Künstliche Intelligenz für die Notfallmedizin

10.07.2020 | Informationstechnologie

Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

10.07.2020 | Energie und Elektrotechnik

Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie

10.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics