Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hasel, Birke oder Gräser? - Mit Mikrofluidik und neuronalem Netzwerk Pollen zuverlässig unterscheiden

30.07.2018

Ein miniaturisiertes Labor auf einem Chip ermöglicht hochaufgelöste Mikroskopieaufnahmen von mehreren Tausend Pollenpartikeln innerhalb weniger Sekunden. Neuronale Netzwerke übernehmen die Bildverarbeitung und klassifizieren die Partikel schnell und zuverlässig. Andreas Kleiber, Doktorand am Leibniz-Institut für Photonische Technologien Jena (Leibniz-IPHT) hat die Methode an verschiedenen hochallergenen Pollenarten getestet. Für seine Ergebnisse, die er während des 3rd Imaging Technology Summer Workshops dedicated to Big Data in Imaging präsentierte, zeichnete ihn die European Society for Molecular Imaging mit dem Posterpreis aus.

In dem briefmarkengroßen Chip strömen in einem schmalen Kanal bis zu 1000 Pollen pro Sekunde an einem Sichtfenster vorbei. Eine Digitalkamera erfasst durch ein Mikroskop-Objektiv jedes einzelne der winzigen Körnchen. Um scharfe Aufnahmen für die anschließende Datenverarbeitung zu erhalten, müssen alle untersuchten Partikel den Flüssigkeitskanal innerhalb der Fokusebene des Objektivs durchfließen. Die Höhe dieser Fokusebene beträgt bei den verwendeten, hochauflösenden Objektiven weniger als ein Hundertstel Millimeter.


Die besondere Anordnung der mikrofluidischen Kanäle erlaubt es, alle Partikel in der Fokusebene auszurichten.

Quelle: A. Kleiber/Leibniz-IPHT

Die technologische Herausforderung meisterten die Wissenschaftlerinnen und Wissenschaftler des Leibniz-IPHT mittels eines ausgeklügelten Designs der Bauteile in dem mikrofluidischen Chip. Das patentierte Verfahren ermöglicht die Pollenkörnchen exakt in der Fokusebene auszurichten und so scharfe Aufnahme aller Objekte zu erhalten.

„Wie bei einer Düse drücken wir mit zwei Flüssigkeitsströmen von den Seiten den Partikelstrom zu einer Schicht zusammen. Eine neuartige Anordnung der Mikrokanäle dreht die Schicht um 90° in die Fokusebene“, erklärt Andreas Kleiber die Technologie. Der Wissenschaftler forscht im Rahmen seiner Doktorarbeit am Leibniz-IPHT an neuen Methoden zur Hochdurchsatzanalyse von Biopartikeln mittels mikrofluidischer Chips.

Das Prinzip der hydrodynamischen Fokussierung ist aus der Durchflusszytometrie zur Analyse von Zellpopulationen bekannt. Dabei werden die Zellen so fokussiert, dass sie die Messzelle entlang einer Linie, also im Gänsemarsch, durchlaufen. „Neu in unserem System ist, dass wir die Partikel in einer dünnen, zweidimensionalen Lamelle anordnen und dadurch das gesamte Bildfeld der Kamera nutzen.

Das macht das Verfahren schnell“, so Kleiber. Die Forscher können die horizontale Position und Dicke der Partikelschicht genau steuern. Damit sind sie in der Lage die Pollen in dem Strom kontrolliert rotieren zu lassen.

„Mit den aus der Computertomografie bekannten Verfahren können wir 3D-Bilddaten erzeugen, die wichtige Informationen z.B. über die dreidimensionale Morphologie eines Pollenkorns liefern. Die 3D-Information verbessert die Zuverlässigkeit der Pollenidentifizierung noch einmal deutlich“, erläutert Kleiber. Die Bilder der verschiedenen Pollenarten wertet der Forscher mit Programmen zur Partikelverfolgung und Merkmalauswahl aus. Ein zuvor angelerntes neuronales Netzwerk ordnet die Aufnahmen anhand der extrahierten Daten einer bestimmten Pollenart zu. Die Treffergenauigkeit beträgt über 98%.

Die Pollen, die aus der Forschungsgruppe Raumklimatologie des Universitätsklinikums Jena stammen, klassifizierten die Forscher ohne zusätzliche Färbung, lediglich anhand der Bildinformationen aus der Mikroskopie. „Wir können die Methode zudem für die Analyse von Zellen anwenden - beispielsweise zur Unterscheidung der Subtypen von weißen Blutzellen“, betont Dr. Thomas Henkel, der die entsprechenden Forschungsarbeiten am Leibniz-IPHT leitet. „Zukünftig soll es mit unserem Chip möglich sein Biopartikel zu sortieren“, so Henkel über die geplanten Forschungsarbeiten, die im Rahmen des Era-NET-DLR Projekts „WaterChip“ von der EU gefördert werden.

Wissenschaftliche Ansprechpartner:

Andreas Kleiber
Arbeitsgruppe Mikrofluidik//Leibniz-IPHT Jena
Andreas.Kleiber(a)leibniz-ipht.de
+49 (0) 3641 206-357

Dr. Thomas Henkel
Arbeitsgruppenleiter
Thomas.Henkel(a)leibniz-ipht.de
+49 (0) 3641 206-307

Weitere Informationen:

https://www.leibniz-ipht.de/institut/presse/aktuelles/detail/hasel-birke-oder-gr...

Dr. Anja Schulz | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Radar des Fraunhofer FHR analysiert Deorbiting-Systeme für mehr Nachhaltigkeit in der Raumfahrt
17.01.2019 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Mobilfunktechnik für die Industrie 4.0
10.01.2019 | Technologie-Zentrum Informatik und Informationstechnik

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leistungsschub für alle Omicron Laser

17.01.2019 | Messenachrichten

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungsnachrichten

Mit Blutgefäßen aus Stammzellen gegen Volkskrankheit Diabetes

17.01.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics