Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein superschneller «Lichtschalter» für künftige Autos und Computer

18.11.2019

Lichtstrahlen schnell zu schalten, ist in vielen technischen Anwendungen wichtig. ETH-​Forschende haben jetzt einen «elektrooptomechanischen» Schalter für Lichtstrahlen entwickelt, der deutlich kleiner und schneller ist als heutige Modelle. Bedeutsam ist das für selbstfahrende Autos und optische Quantentechnologien.

Selbstfahrende Autos werden immer besser und zuverlässiger. Bevor sie womöglich bald vollkommen autonom auf den Strassen unterwegs sein dürfen, sind einige Hürden zu nehmen. Vor allem die blitzschnelle Erfassung der Umgebung und das Erkennen von Personen und Hindernissen bringt heutige Technologien an ihre Grenzen.


Op­ti­sches Netz­werk mit elek­tro­op­to­me­cha­ni­schen Schal­tern: Je nach Span­nung len­ken die Schal­ter ei­nen Licht­strahl ent­we­der um 90 Grad ab (vor­ne links) oder las­sen ihn un­ge­stört im Wel­len­lei­ter pas­sie­ren (vor­ne rechts).

Bild: Chris­ti­an Haff­ner et al.

Wissenschaftler um Jürg Leuthold vom Institut für Elektromagnetische Felder an der ETH Zürich haben nun gemeinsam mit Kollegen des National Institute of Standards and Technology (NIST) in den USA und der Chalmers University in Göteborg (Schweden) einen neuartigen elektrooptomechanischen Schalter entwickelt, mit dem sich vielleicht beide Probleme elegant lösen lassen.

Plasmonik als Zaubermittel

Das Zaubermittel, das die Forscher dabei verwendeten, heisst Plasmonik. Bei dieser Technik werden Lichtwellen in Strukturen gezwängt, die viel kleiner sind als die Wellenlänge des Lichts – was eigentlich nach den Gesetzen der Optik gar nicht geht. Möglich wird es dadurch, dass man das Licht an der Grenzfläche zwischen einem Metall und einem Dielektrikum, also einer elektrisch schwach-​ oder nichtleitenden Substanz wie etwa Luft oder Glas, entlang leitet.

Die elektromagnetischen Wellen des Lichts dringen dabei teilweise in das Metall ein und regen dort Elektronen zum Schwingen an, wodurch ein Zwitterwesen aus Lichtwelle und elektronischer Anregung entsteht – das Plasmon.

Vor mehr als zehn Jahren prophezeiten namhafte Physiker bereits, dass auf Plasmonen basierende optische Schalter eine Revolution in der Datenübertragung und Datenverarbeitung einläuten könnten, da beides mit Photonen viel schneller geht als mit herkömmlicher Elektronik. Bislang scheiterten kommerzielle Anwendungen allerdings an den grossen Verlusten, die beim Transport von Photonen durch plasmonische Bauteile entstehen, sowie an den hohen benötigten Schaltspannungen.                                     

Stärken der Plasmonik ausgenutzt

«Diese Probleme haben wir nun gelöst, indem wir die guten Eigenschaften der Plasmonik ausgenutzt und die schlechten minimiert haben», sagt Postdoktorand Christian Haffner, der als Erstautor des soeben erschienenen Science-​Artikels das Projekt geleitet hat. Herzstück des von Haffner und Kollegen entwickelten elektrooptomechanischen Schalters ist eine nur 40 Nanometer dünne und wenige Mikrometer breite Goldmembran, die durch eine Aluminiumoxidscheibe von einem Siliziumsubstrat getrennt ist.

Die Grösse des Spalts zwischen Goldmembran und Substrat kann dabei durch elektrische Kräfte mechanisch kontrolliert werden. Legt man eine Spannung an, so biegt sich die Membran leicht, und der Spalt wird kleiner.

Die Grösse des Spaltes wiederum entscheidet darüber, ob eine Lichtwelle einfach geradeaus weiterfliegt oder um die Goldmembran herum abgelenkt wird. Hier kommen die Plasmonen ins Spiel: Für eine bestimmte Spaltbreite lassen sich nur Plasmonen mit einer bestimmten Wellenlänge auf der Goldmembran anregen. Hat das Licht eine andere Wellenlänge, so wird es nicht an die Membran gekoppelt und breitet sich gradlinig im Silizium-​Wellenleiter aus.

Geringe Verluste und Schaltspannung

«Dadurch, dass wir Plasmonen nur für das kurze Stück um die Schaltmembran herum benutzen, haben wir wesentlich geringere Verluste als in bisherigen elektrooptischen Schaltern», erklärt Haffner. «Zudem haben wir die Goldmembran sehr klein und dünn gemacht, so dass wir sehr schnell und mit geringer Spannung schalten können.» Bereits jetzt konnten die Wissenschaftler zeigen, dass ihr neuer Schalter mehrere Millionen Mal in der Sekunde ein-​ und ausgeschaltet werden kann, und das mit einer elektrischen Spannung von nur etwas mehr als einem Volt.

Dadurch werden sperrige und stromfressende Verstärker, wie sie bisher für elektrooptische Schalter üblich waren, überflüssig. In Zukunft wollen die Forscher ihren Schalter weiter verbessern, indem sie den Spalt zwischen Gold und Silizium noch kleiner machen. Dadurch lassen sich sowohl die Lichtverluste als auch die Steuerspannung deutlich verringern.

Vom Auto bis zu Quantentechnologien

Anwendungspotenzial für den neuen Schalter gibt es reichlich. So könnten LIDAR-​Systeme («Light Detection and Ranging», deutsch: Lasergestützte Abstandsmessung) für selbstfahrende Autos, bei denen die Intensität und Ausbreitungsrichtung von Lichtstrahlen extrem schnell verändert werden muss, von den schnellen und kompakten Schaltern profitieren. Und die Mustererkennung, die für die Steuerung der Autos nötig ist, kann mit solchen Schaltern schneller gemacht werden.

Dazu könnte man die Schalter in optischen neuronalen Netzwerken einsetzen, die dem menschlichen Gehirn nachempfunden sind. Dort würden sie dann als Gewichtungselemente genutzt, mit denen das Netzwerk «lernt», bestimmte Objekte zu erkennen – und das praktisch mit Lichtgeschwindigkeit.   

Solche optischen Umsetzungen von Schaltkreisen, die normalerweise mit elektrischem Strom funktionieren, sind auch in anderen Bereichen ein brandaktuelles Thema. Für die Realisierung von Quantentechnologien beispielsweise werden optische Quantenschaltkreise intensiv erforscht. Bislang werden optische Quantenschaltkreise von klassischen optischen Schaltern unterstützt.

Diese Schalter beruhen zumeist auf einer Änderung des Brechungsindex eines Materials durch Erhitzen, wodurch die Lichtstrahlen verschieden stark abgelenkt werden. Das funktioniert allerdings nur langsam und ist auf lange Sicht unvereinbar mit den niedrigen Temperaturen, bei denen andere Quantenelemente in der Regel funktionieren, wie etwa die Quanten-​Bits oder «Qubits» (entsprechend den klassischen Bits, die «0» und «1» darstellen) eines Quantencomputers. Ein schneller Schalter, der sich praktisch überhaupt nicht erhitzt, dürfte deshalb für solche Anwendungen höchst willkommen sein.

Wissenschaftliche Ansprechpartner:

Prof. Juerg Leuthold, +41 44 633 80 10, leuthold@ethz.ch, Professur Photonik u. Kommunikation, ETH Zürich

Originalpublikation:

Haffner C, Joerg A, Doderer M, Mayor F, Chelladurai D, Fedoryshyn Y, Roman CI, Mazur M, Burla M, Lezec  HJ, Aksyuk VA, Leuthold J: Nano–opto-​electro-mechanical switches operated at CMOS-​level voltages. Science, 15. November 2019, Vol. 366, Issue 6467, S. 860-​​864. DOI: 10.1126/science.aay8645.

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2019/11/ein-superschne...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Sicherheitsanforderungen für Unternehmen steigen – so sieht eine moderne IT-Sicherheitsstrategie aus!
14.02.2020 | businessAD

nachricht Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar
13.02.2020 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics