Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Digitalisierung verkürzt Planungsprozess für Schmiedeteile

20.03.2018

Den Herstellungsprozess eines Schmiedeteils zu planen, ist bisher kosten- und zeitintensiv. Die Qualität des Ergebnisses ist zudem von den Erfahrungen und Fähigkeiten des Konstrukteurs abhängig. Das Institut für Integrierte Produktion Hannover (IPH) gGmbH forscht deshalb an einer Methode, die den Aufwand für die Planung der schrittweisen Umformung eines Schmiedeteils stark reduziert. Dabei digitalisieren die Forscher diese sogenannte Stadienplanung und sparen dadurch Zeit und Material ein.

Vor allem kleine und mittlere Unternehmen (KMU) in der Schmiedebranche müssen aus Wettbewerbsdruck schnell produzieren und haben häufig nicht die Zeit und die Kapazitäten, die Auslegung der Stadienfolge für ein neues Bauteil ressourceneffizient zu planen. In einzelnen Produktionsschritten wird dabei die Rohform, das sogenannte Halbzeug, in das gewünschte Bauteil umgeformt.


Stadienplanung: In drei Schritten vom Halbzeug zur Kurbelwelle.

Quelle: IPH/Philipp Cartier


Die 3D-Szizze des gewünschten Bauteils im CAD-Format ist der Ausgangspunkt.

Quelle: IPH/Ralf Büchler

Die Effizienz des Prozesses ist von den Erfahrungen des Konstrukteurs abhängig. Diese Erfahrungen und das gesammelte Fachwissen werden nun vom IPH systematisch erfasst und in mathematische Formeln gegossen. Mithilfe dieser formeltechnisch beschriebenen Randbedingungen soll ein Software-Demonstrator in der Lage sein, automatisiert eine besonders materialeffiziente Stadienplanung zu erstellen.

Das Forschungsprojekt wird über die Arbeitsgemeinschaft industrieller Forschungseinrichtungen Otto von Guericke e.V. (AiF) im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie (BMWi) gefördert.

„Nach der alten Methode dauerte dieser Planungsprozess teilweise Wochen, in Zukunft geht das in Minuten“, erklärt Yorck Hedicke-Claus vom IPH den Vorteil des neuen Verfahrens. Bisher wird die Finite-Elemente-Methode (FEM) verwendet, um die Umformung geometrisch komplexer Körper zu modellieren und den Prozess entsprechend auszulegen.

Dabei konnten Konstrukteure mittels eines Computerprogramms den Weg vom Halbzeug zum gewünschten Bauteil planen. Die neue Methode zur effizienten Stadienplanung dreht diesen Prozess um: Unter Beachtung der umformtechnischen Regeln generiert eine Berechnung den Weg rückwärts vom Bauteil zum Halbzeug und erstellt so die einzelnen Stadien des Umformprozesses.

„Die Betriebe sparen dadurch Zeit in der Entwicklungsphase der Stadienfolge sowie Material und Energie in der Produktion“, sagt Yorck Hedicke-Claus. Denn bei einer optimalen Planung reduziert sich der Grantanteil und auch die benötigte Energie, um das Halbzeug zu formen.

Zuerst müssen die Forscher des IPH dafür die Anforderungen an eine prozesssichere Umformung mathematisch erfassen. Dazu gehört zum Beispiel, dass Riss- und Faltenbildung verhindert werden müssen. Ausgangspunkt der Methode ist eine 3D-Skizze des gewünschten Bauteils im CAD-Format, von der die Forscher Größe, Kontur und andere geometrische Daten ermitteln.

Dieses Modell unterteilen sie dann in verschiedene Ebenen und bestimmen für jeden dieser Querschnitte den Flächeninhalt und den Schwerpunkt. Daraus lässt sich die Schwerpunktlinie im dreidimensionalen Raum und die Massenverteilung um diese Linie herum ermitteln. Diese Werte werden dann Schritt für Schritt an die Massenverteilung des ursprünglichen Halbzeugs angenähert.

An dieser Stelle werden die in der Schmiedetechnik bekannten umformtechnischen Randbedingungen relevant – zum Beispiel die maximal mögliche Querschnittsänderung pro Stadie oder die gewünschte Menge des überschüssigen Materials, der Grantanteil. Dieses Wissen gehört beim normalen Planungsprozess zum Fach- und Erfahrungswissen der Konstrukteure. Da diese Regeln nun allerdings mathematisch erfasst und in das Programm eingespeist werden, kann in Zukunft unabhängig vom Fachpersonal darauf zugegriffen werden.

Das Computerprogramm generiert nun auf Grundlage dieser Regeln Schritt für Schritt die Verschiebungen vom Schmiedeteil zurück zum Ursprungsobjekt. Die Anzahl der Schritte ist dabei abhängig von der Komplexität des Bauteils. „Das Programm soll am Ende eine erste mögliche Stadienfolge herausgeben“, erläutert Yorck Hedicke-Claus vom IPH. „Die Stadienanzahl lässt sich aber auch anpassen. Mehr Stadien sind kein Problem. Sollen es aber weniger sein, muss man Abstriche zum Beispiel beim Materialverbrauch in Kauf nehmen.“

Haben die Forscher vom IPH die Programmierungsarbeit abgeschlossen, erfolgen umfassende Test- und Anpassungsphasen. Zuerst wird die Methode an komplexen Bauteilgeometrien getestet, auf Umsetzbarkeit geprüft und entsprechend angepasst. Im nächsten Schritt vergleichen sie das neue Programm mit der bisher verwendeten FEM-Simulation und überprüfen die Qualität der Ergebnisse. Abschließend führen sie eine experimentelle Validierung durch: Die Forscher vergleichen die auf diese Weise erstellte Stadienfolge mit den bereits in der Industrie angewandten Methoden.

eitere Informationen:

http://stadienplanung.iph-hannover.de

Niklas Kleinwächter | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.iph-hannover.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht IT-Sicherheit beim autonomen Fahren
22.06.2018 | Fachhochschule St. Pölten

nachricht Schneller und sicherer Fliegen
21.06.2018 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics