Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

13.08.2018

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen Neuzulassungen geben. Dies erfordert neue technische Lösungen für die Ladeinfrastruktur: so soll der Ladevorgang möglichst ohne Hilfe des Nutzers und so rasch als möglich vonstattengehen.


Das automatisierte konduktive CCS-Komfortladesystem ist für Standard- und Normladestecker von E-Fahrzeugen konzipiert.

© FTG - TU Graz


Mit dem robotergesteuerten Schnellladesystem für E-Fahrzeuge präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern eine Weltneuheit.

© FTG - TU Graz

Forschende des Institutes für Fahrzeugtechnik der TU Graz haben nun ein automatisiertes konduktives, also kabelgebundenes, Robotersystem entwickelt, das erstmals das Laden von verschiedenen, bewegten Fahrzeugen direkt nacheinander ermöglicht.

Das CCS-Komfortladesystem ist für Standard- und Normladestecker von E-Fahrzeugen konzipiert, sodass keine speziellen Adaptionen an den Fahrzeugen erforderlich sind. Als Projektpartner mit an Bord waren BMW AG München, MAGNA Steyr Engineering Graz, der Linzer Automatisationsspezialist KEBA sowie der Österreichische Verein für Kraftfahrzeugtechnik (ÖVK) in Wien.

Bernhard Walzel, der im Rahmen seiner Dissertation an der TU Graz dieses Forschungsgebiet federführend betreibt, erklärt die revolutionäre Methodik: „Wir haben es zum ersten Mal geschafft, dass eine roboterbasierte Ladestation mehrere Fahrzeuge hintereinander selbstständig elektrisch auflädt, ohne dass die Fahrzeuge dafür speziell adaptiert werden müssen. Dank ausgeklügelter Kameratechnik erkennt der Roboter die Ladebuchse der Fahrzeuge und kann so selbstständig verschiedene E-Autos, die nacheinander in die Ladestation einfahren, aufladen. Das Problem der Fahrzeugpositionierung am Ladeplatz konnte also gelöst werden, sodass das System selbst dann funktioniert, wenn Park-Fehlstellungen auftreten.“

Ebenfalls bis dato einzigartig ist, so Walzel, dass der Roboter bei unterschiedlichen Lichtbedingungen in einem Gebäude, aber auch im Freien funktioniert.

Automatisiertes, konduktives Laden von E-Fahrzeugen

Eine besondere Herausforderung stellte für die Wissenschafter die Programmierung und Integration der Sensortechnologie zur exakten Lage- und Typerkennung von Fahrzeug und Ladebuchse dar. Dabei wurde eng mit dem Institut für Maschinelles Sehen und Darstellen der TU Graz zusammengearbeitet und das Roboter-Ladesystem mit mehreren Kameras bestückt. Die Kameras erkennen Position und Typ der Ladebuchse und definieren für den Roboter, wo das Ladekabel angesteckt werden muss.

Ziel war es, die Sensortechnologie und den Laderoboter so auszulegen, dass auch bei Verwendung unterschiedlicher Fahrzeugtypen und Fahrzeugpositionen keine speziellen Adaptionen am Fahrzeug erforderlich sind. Das System ist also für alle Standard- und Normladestecker anwendbar. Zur Lösung der Problemstellung entwickelten die Wissenschafter ein komplexes mechatronisches System bestehend aus Sensortechnologie, Roboterkinematik und Robotersteuerung.

Die Grazer Technologie ist darauf ausgelegt, das automatisierte Schnellladen von E-Fahrzeugen mit hohen Ladeleistungen zu ermöglichen und elektrische Fahrzeuge innerhalb weniger Minuten für längere Fahrdistanzen aufzuladen.

Diese hohen Ladeleistungen erfordern neuartige flüssigkeitsgekühlte Stecker und Kabel, welche mit Hilfe des robotergesteuerten Schnellladesystems einfach mit dem Auto verbunden werden können. Des Weiteren bietet die Grazer Technologie ein Lösungskonzept für zukünftiges vollautomatisches Parken und Laden von E-Fahrzeugen.

Das Ladekonzept und Untersuchungen zu Sensortechnologien entstanden im Zuge einer Auftragsforschung des Österreichischen Vereins für Kraftfahrzeugtechnik (ÖVK). Die prototypische Darstellung und Erprobung des Ladesystems wurde im Projekt „KoMoT – Komfortable Mobilität mittels Technologieintegration“ umgesetzt, gefördert von der österreichischen Forschungsförderungsgesellschaft FFG und dem österreichischen Bundesministerium für Verkehr, Innovation und Technologie, bmvit.

Der Forschungsbereich ist im Field of Expertise „Mobility & Production“ verankert, einem von fünf strategischen Schwerpunktfeldern der TU Graz.

Wissenschaftliche Ansprechpartner:

Bernhard WALZEL, Dipl.-Ing.
Helmut BRUNNER, Dipl.-Ing.
Mario HIRZ, Associate Prof. Dr.
TU Graz | Institut für Fahrzeugtechnik
Inffeldgasse 11/II, 8010 Graz
Tel.: +43 316 873 35278
Mobil: +43 660 4840492
bernhard.walzel@tugraz.at

Weitere Informationen:

https://youtu.be/g9X1yO2-ADw
http://www.presse.tugraz.at

Barbara Gigler | Technische Universität Graz

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg
10.07.2020 | Technische Universität Bergakademie Freiberg

nachricht Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie
10.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics