Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blitzlicht treibt Computerentwicklung voran

03.05.2018

„Nature“-Veröffentlichung: Physiker kontrollieren Energiezustände in Halbleitern mittels Licht

Schneller schalten: Kurze Lichtblitze eignen sich dazu, den raschen Wechsel zwischen zwei Energiezuständen in einem Halbleiter zu kontrollieren – womit eine Voraussetzung erfüllt ist, um automatische Rechenoperationen auszuführen, die erheblich schneller vonstattengehen als mit herkömmlicher Elektronik. Zu diesem Resultat kommen Physiker aus Regensburg, Marburg und Ann Arbor in den USA aufgrund von Laserexperimenten und theoretischen Untersuchungen. Die Forschungsgruppe berichtet über ihre Ergebnisse im Wissenschaftsmagazin „Nature“.


Die blauen Hügel veranschaulichen die Energielandschaft eines Halbleiters. Elektronen werden von einem Tal in ein anderes Tal beschleunigt (gelborange).

(Illustration: Fabian Langer, Uni Regensburg; die Abbildung darf nur im Zusammenhang mit der Berichterstattung über die hier angezeigte wissenschaftliche Veröffentlichung verwendet werden.)

Computer bestehen aus Bauteilen, die auf der Bewegung von Elektronen basieren; der Elektronentransport kommt durch das Anlegen einer elektrischen Spannung zustande. Lange Zeit wurde der Ruf nach verbesserten Leistungen mit höheren Taktraten und einer fortschreitenden Miniaturisierung der Bauteile beantwortet. „Eine weitere Verkleinerung und Beschleunigung stößt jedoch an fundamentale Grenzen“, sagt der Marburger Physiker Dr. Peter Hawkins, einer der Erstautoren des Aufsatzes.

„Einen Ausweg eröffnet die Kontrolle von Elektronenbewegung durch das elektrische Feld einer Lichtwelle“, führt Fabian Langer von der Universität Regensburg aus, der sich mit Hawkins die Erstautorenschaft teilt:

Extrem kurze Lichtblitze sind in der Lage, die Bewegung von Elektronen auf einer ultra-kurzen Zeitskala zu manipulieren und zu steuern. Dies erlaubt eine millionenfach schnellere Steuerung von elektrischen Strömen, mit der sich die Beschränkungen konventioneller Elektronik überwinden lassen.

Das Team um Professor Dr. Stephan W. Koch von der Philipps-Universität Marburg, Professor Dr. Mackillo Kira aus Ann Arbor sowie den Professoren Dr. Jaroslav Fabian, Dr. Christian Schüller, Dr. Tobias Korn und Dr. Rupert Huber von der Universität Regensburg ging nun daran, einen solchen Prozess in einem neuartigen Halbleitermaterial zu untersuchen. Dieses besteht aus einer einzigen Schicht von Wolfram-Atomen, die auf beiden Seiten von Selen-Atomen umgeben ist.

Ein schwacher Lichtpuls genügt, um Elektronen in diesem hauchdünnen Halbleiter zu zwei unterschiedlichen, voneinander getrennten Energiezuständen anzuregen, die Fachleute als Täler bezeichnen. Wählt man die Einstellung der Lichtquelle geschickt, so lassen sich die beiden Täler getrennt voneinander anregen, wobei Elektronen gezielt nur in einem der beiden Täler entstehen.

„Die beiden Täler unterscheiden sich durch eine quantenphysikalische Eigenschaft, nämlich ihren Pseudospin“, erläutert der Marburger Physiker Dr. Ulrich Huttner, der an der wissenschaftlichen Veröffentlichung beteiligt ist.

Um diese Phänomene irgendwann zum Rechnen verwenden zu können, muss man den Wechsel von einem Zustand zum anderen unter Kontrolle bringen. Das ist den Physikern jetzt gelungen. Zu diesem Zweck bestrahlten die Regensburger Experimentatoren das hauchdünne Material zunächst mit kurzen, starken Lichtpulsen, um Elektronen zwischen den beiden Energietälern zu transportieren.

Dabei kommt es zu kurzen Lichtblitzen, die Rückschlüsse darauf zulassen, in welchem Tal sich das Elektron befindet. Für die Analyse kombinierten die Physiker aus Marburg und Ann Arbor verschiedene Methoden der Theoretischen Physik: Sie berechneten einerseits die Eigenschaften des Halbleiters und griffen andererseits auf Modelle der Quantenmechanik zurück, um die Prozesse im Inneren des Materials zu beschreiben.

Die Untersuchungen bestätigten, dass die auftretenden Effekte tatsächlich auf einer Änderung des Pseudospins beruhen, die durch ein sehr starkes Lichtfeld verursacht wird. „Wir zeigen mit unseren Untersuchungen erstmals, dass man den Pseudospin in kürzesten Zeitintervallen durch Lichtwellen ändern kann“, schreiben die Autoren.

„Solch ein Schalt-Prozess könnte in Zukunft ein wichtiger Baustein im Gebiet der Lichtwellen-Elektronik sein“, vermuten die Verfasser. „Das Zusammenspiel von experimenteller und theoretischer Physik stellt einen ganzen Besteckkasten neuartiger Instrumente bereit, wie sie für die künftige Quanteninformationstechnologie benötigt werden.“

Die Arbeitsgruppen aus Regensburg, Marburg und Ann Arbor kooperieren bereits seit geraumer Zeit miteinander, um Experiment und Theorie zu kombinieren. Professor Dr. Stephan Koch lehrt Theoretische Halbleiterphysik an der Philipps-Universität. Er ist Träger des Leibniz-Preises der Deutschen Forschungsgemeinschaft, des höchst dotierten Wissenschaftspreises im deutschsprachigen Raum, und gehört mit seiner Arbeitsgruppe dem Marburger Sonderforschungsbereich 1083 der Deutschen Forschungsgemeinschaft zum Thema „Innere Grenzflächen“ an.

Professor Dr. Rupert Huber leitet das Institut für Experimentelle und Angewandte Physik der Universität Regensburg. Er erhielt im Jahr 2012 einen „ERC Starting Grant“ des Europäischen Forschungsrates.

Die wissenschaftliche Arbeit, die der Veröffentlichung zugrunde liegt, wurde vom Europäischen Forschungsrat und von der Deutschen Forschungsgemeinschaft finanziell gefördert, unter anderem durch deren Sonderforschungsbereiche 1083 und 1277 sowie das Graduiertenkolleg 1570.

Originalveröffentlichung: Fabian Langer, Peter W. Hawkins & al.: Lightwave valleytronics in a monolayer of tungsten diselenide, Nature 2018

Weitere Informationen:
Ansprechpartner: Professor Dr. Stephan W. Koch,
Philipps-Universität Marburg
Arbeitsgruppe Theoretische Halbleiterphysik
Tel.: 06421 28-21336
E-Mail: stephan.w.koch@physik.uni-marburg.de

Professor Dr. Rupert Huber,
Universität Regensburg
Arbeitsgruppe Ultraschnelle Quantenphysik und Photonik
Tel.: 0941 943-2070, -2071
E-Mail: rupert.huber@physik.uni-regensburg.de

Johannes Scholten | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-marburg.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht Gegen das Verblassen historischer Dokumente
11.07.2018 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics