Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Europäisches Forschungskonsortium für Transistoren der nächsten Generation

21.09.2001


Grenzfläche zwischen einer Schicht aus Bleizirkonat-Titanat (oben) und einem Silizium-Wafer (unten) in einer Nanostruktur von weniger als 100 nm Kantenlänge ( Transmissionselektronenmikroskop ). Foto: Max-Planck-Institut für Mikrostrukturphysik


Die TU Clausthal und das Max-Planck-Institut für Mikrostrukturphysik beteiligen sich mit sechs weiteren Partnern an der Entwicklung neuer Werkstoffe für die weitere Miniaturisierung von Transistoren. Das europäische Forschungskonsortium INVEST will mit Hilfe neuer Materialien die technologischen Schranken für eine weitere Miniaturisierung von Halbleiterbauelementen überwinden. Das Projekt startete im Juli 2001 und wird im fünften Rahmenprogramm der Europäischen Kommission zur Informationsgesellschaft gefördert. INVEST (Integration of very high-k dielectrics with silicon CMOS technology) steht für "Integration dielektrischer Materialien mit einer hohen Dielektrizitätskonstante in die Silizium-CMOS(Complementary Metal-Oxide Semiconductor)-Technologie", die dominierende Herstellungstechnik für Mikroprozessoren.

Ein Transistor gleicht einem einfachen Ventil oder Schalter, bei dem mit einer angelegten Spannung der Strom ein- und ausgeschaltet werden kann. Die Spannung erzeugt auf beiden Seiten einer isolierenden Schicht Ladungsträger, die für das Fließen des Stroms benötigt werden. Die fort-schreitende Miniaturisierung elektronischer Bauelemente ermöglicht immer höhere Prozessorgeschwindigkeiten und einen geringeren Stromverbrauch. Gleichzeitig sinken die Herstellungskosten erheblich. Doch Größe und Leistungsmerkmale eines Transistors hängen in einem Halbleiterbauelement ganz wesentlich von der sehr dünnen elektrisch isolierenden Schicht im Transistor, dem so genannten Gatteroxid, ab. Seit etwa drei Jahrzehnten wird dafür Siliziumdioxid eingesetzt.

Mit zunehmender Miniaturisierung der Transistoren wird auch die Isolierschicht immer dünner. Ist die Schicht zu dick, entsteht nicht mehr die erforderliche Anzahl von Ladungsträgern und nach dem Einschalten des Transistors fließt kein ausreichend starker Strom. Wenn die Schicht eine Dicke von nur noch wenigen Atomlagen hat, verliert sie ihre isolierenden Eigenschaften, sodass Leckströme das präzise Schalten des Transistors verhindern.

Diese Probleme treten mit dem herkömmlichen Werkstoff Siliziumdioxid auf und sollen durch den Einsatz neuer isolierender Materialien, die eine höhere Dielektrizitätskonstante aufweisen, gelöst werden. Diese Materialien können in dickeren Schichten eingesetzt werden und erzeugen dennoch genügend Ladungsträger beim Einschalten des Transistors.

Im Mittelpunkt des INVEST-Projekts steht deshalb die Einführung neuer Metalloxide mit einer relativ hohen Dielektrizitätskonstanten "k" (größer als 20) als Gatteroxid. Damit produzierte Transistoren sollen trotz ihres relativ dicken Gatteroxids (3-10 nm) die Leistungsmerkmale von Bauelementen aufweisen, die auf der Basis von Siliziumdioxid nur mit ultradünnen Schichten von 2 nm erzielt werden könnten.

Die Wissenschaftler von INVEST gehen davon aus, dass die neuen Metalloxide es erlauben, die seitlichen Ausdehnung der Transistoren von gegenwärtig 130 bis auf 50-100 Nanometer zu reduzieren. Erste Resultate des INVEST Konsortiums sind bereits viel versprechend. Doch bis die neuen Materialien in dem hoch entwickelten und optimierten Herstellungsprozess für Mikroprozessoren eingesetzt werden, sind noch viele wissenschaftliche und technische Herausforderungen zu bewältigen.

Das INVEST Projekt wird sich auseinandersetzen mit den Eigenschaften der neuen Materialien, der Qualität der Grenzflächen zur Isolierschicht, den Anforderungen an die Herstellungstechnik, den Leistungsmerkmalen und der Lebensdauer der Transistoren sowie mit der Integration und Verträglichkeit zu der heute vorherrschenden CMOS Herstellungstechnologie.

Um komplexe Metalloxide als Gatteroxide direkt auf Silizium aufwachsen zu lassen, setzt INVEST auf die so genannte Molekularstrahlepitaxie (MBE). Diese ermöglicht es, Materialien gewissermaßen Atomlage für Atomlage aufzubauen. Konkret soll die Molekularstrahltechnologie für neue Gatteroxide bei der Herstellung von 20 cm großen Wafern eingesetzt werden. Wafer sind Siliziumscheiben, die als Trägermaterial für integrierte Schaltkreise (Chips) dienen. Sie können eine Vielzahl von Chips aufnehmen. Erst nach deren Funktionsprüfung werden die einzelnen Chips dann vom Wafer abgetrennt.

Die Molekularstrahlepitaxie wird heute bereits zur Herstellung von "III-V Halbleitern" wie zum Beispiel Galliumarsenid eingesetzt. Das Team von INVEST hofft, diese Methode nun auch in den komplizierten Herstellungsprozess von Halbleiterbauelementen auf Siliziumbasis einführen zu können. Innerhalb von zwei Jahren sollen dafür geeignete Materialien identifiziert sein. Nach drei Jahren will man so viele Erfahrungen mit den neuen Gatteroxide gesammelt haben, dass sie nach 2005 eingesetzt werden können. INVEST soll damit die weltweite Vorreiterrolle Europas bei MBE-Geräten stärken und die Grundlagen für eine neue Generation von Herstellungsgeräten für Oxidfilme legen.

Die Abteilung von Prof. Blöchl an der Technischen Universität Clausthal beteiligt sich an dem Projekt mit ab-initio Simulationen des Materialwachstums sowie der Bindungsverhältnisse und der Atomstruktur in den neuen Materialien. Die Mitarbeiter um Prof. Gösele vom Hallenser Max-Planck-Institut für Mikrostrukturphysik bringen ihre Kompetenz in der Transmissionselektronenmikroskopie und der elektrischen Messtechnik ein, mit der die Qualität neuartiger Oxid-Silizium-Grenzflächen detailliert untersucht werden soll.

Weitere Mitglieder des Forschungskonsortiums sind das IBM Forschungslabor Zürich in der Schweiz, die Philips AG, vertreten mit ihrer Forschungseinrichtung in Leuven, Belgien, zwei Ultrahochvakuumkomponentenhersteller (RIBER S.A, Frankreich, und Oxford Applied Research Ltd., Großbritannien), ein unabhängiges Forschungszentrum, das sich auf die Entwicklung mikroelektronischer Prozesslinien spezialisiert hat (Interuniversitair Micro-Elektronica Centrum, Belgien), sowie zwei weitere akademischen Forschungseinrichtungen auf dem Gebiet der Material- und Ingenieurwissenschaften, das Nationale Forschungszentrum "Demokritos", Griechenland, und das Nationale Institut für Festkörperphysik, Italien.

Weitere Informationen:

Prof. Dr. Peter E. Blöchl
Institut für Theoretische Physik
Technische Universität Clausthal
Leibnizstr. 10
38678 Clausthal Zellerfeld
Tel: 0 53 23 / 72 - 20 21
Fax: 0 53 23 / 72 - 31 16
E-Mail: Peter.Bloechl@tu-clausthal.de

Dr. Marin Alexe
Max-Planck-Institut für Mikrostrukturphysik
Weinberg 2
06120 Halle/Saale
Tel: 03 45 / 55 82 - 7 05
Fax: 03 45 / 55 11 - 2 23
E-Mail: malexe@mpi-halle.de

Dr. Athanasios Dimoulas, Projectmanager INVEST
Demokritos
P.O. Box 60228
EL-15310 Athen
Griechenland
Tel: 0030-1/6503340
Fax: 0030-1/6519430
E-Mail: dimoulas@ims.demokritos.gr

Jochen Brinkmann | idw
Weitere Informationen:
http://www.pt.tu-clausthal.de/atp/
http://www.mpi-halle.de/

Weitere Berichte zu: Forschungskonsortium Gatteroxid Invest Miniaturisierung Schicht Transistor

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer
19.02.2020 | Universität Stuttgart

nachricht Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter
19.02.2020 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics