Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grüne Elektronik in Handys

24.01.2001


Ein Handy besteht vorwiegend aus

Kunststoffen (links, in Gewichts-%). Wird es nach dem toxischen

Potenzial (TPI) der Toolbox bewertet, dominieren hingegen

Schwermetalle, ihre Legierungen und Verbindungen.© Fraunhofer

IZM


... mehr zu:
»Elektronikschrott »Handy »IZM »Toolbox
Der Markt für Mobiltelefone boomt. Elektronikschrott wird zu einem drängenden Problem. Mit einer Toolbox lassen sich schnell und einfach die Inhaltsstoffe elektronischer Geräte bewerten, damit der
Ressourcenverbrauch sinkt und die Umweltverträglichkeit steigt.

Mehr als eine Milliarde Mobiltelefone werden voraussichtlich Ende des kommenden Jahres weltweit eingesetzt. Angesichts der wachsenden Berge aus Elektronikschrott ist es nur noch eine Frage der Zeit, bis es Pflicht wird, gebrauchte Elektronikgeräte zurückzunehmen. Viele Hersteller analysieren bereits jetzt die Lebensdauer ihrer Geräte und versuchen, sie vor Produktionsbeginn umweltverträglicher zu gestalten. Ein besonders einfaches und schnelles Verfahren, um mit möglichst wenig bedenklichen Inhaltsstoffen auszukommen und den gesamten Prozess zu optimieren, bietet die EE-Toolbox des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration IZM in Berlin.

»EE« steht für »Environmental Engineering« - umweltverträgliches Konstruieren. Dies beginnt damit, Art und Menge der verwendeten Substanzen zu erfassen. Ein Handy besteht zu mehr als der Hälfte seines Gewichts aus verschiedenen Kunststoffen. Bei den Metallen führt Kupfer - andere Bestandteile wie Nickel, Blei oder Silber liegen im Bereich von einem Prozent oder darunter. Werden die Inhaltsstoffe in der ersten Stufe der Toolbox danach bewertet, wie toxisch sie für Mensch und Umwelt sind, so bietet sich ein anderes Bild. Den größten Anteil bilden die Schwermetalle - Kunststoffe können fast vernachlässigt werden.

Die Metalle lassen sich nicht ohne weiteres durch harmlosere Legierungen ersetzen, doch können die Hersteller die Probleme in der Planung der Produkte bereits früher erkennen und berücksichtigen. Deutlich wird auch, welche Recyclingverfahren besonders wichtig sind und daher verstärkt ausgebaut werden sollten. Der weltweit größte Hersteller von Mobiltelefonen Nokia hat eine Studie mit der Toolbox des IZM durchgeführt und optimiert mit den Erkenntnissen Design und Produktion seiner Geräte.

»Nach dem toxischen Potential der Inhaltsstoffe wenden wir weitere Stufen unserer Toolbox in der Praxis an«, betont Hansjörg Griese vom Fraunhofer-Institut. »Wir erfassen, wieviel Energie bei der Produktion der Rohstoffe und der Geräte aufgewendet wird. Ebenso bedeutsam ist der Energieverbrauch der Geräte selbst, sowie eine Umweltanalyse der verschiedenen Recyclingschritte und der dabei anfallenden Kosten.« So entsteht ein umfassendes Bild vom Lebenszyklus elektronischer Geräte - als Voraussetzung dafür, dass sie grüner werden.

Ansprechpartner:
Dipl.-Ing. Hansjörg Griese
Telefon: 0 30/4 64 03-1 30
Fax: 0 30/4 64 03-1 31 
griese@izm.fhg.de

Weitere Informationen finden Sie im WWW:

Dr. Johannes Ehrlenspiel | idw

Weitere Berichte zu: Elektronikschrott Handy IZM Toolbox

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Industrie 4.0 im Fräsprozess: Geringere Schwingungen durch aktive Dämpfung und angepasste Drehzahlen
17.06.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Starre Bindungen für neue Smartphone-Datenspeicher
14.06.2019 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Industrie 4.0 im Fräsprozess: Geringere Schwingungen durch aktive Dämpfung und angepasste Drehzahlen

17.06.2019 | Informationstechnologie

Mit dem Milbentaxi zum Nachbarwirt: Honigbienen-Parasit Varroa-Milbe wird auch Wildbienen gefährlich

17.06.2019 | Biowissenschaften Chemie

Trennmittelfrei: ReleasePLAS®-Technologie ersetzt Silikonbeschichtung beim Wachsspritzguss

17.06.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics